
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
1

Chapter 10 Lists

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
2

Opening Problem

Read one hundred numbers, compute their

average, and find out how many numbers are

above the average.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
3

Solution

DataAnalysis Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
4

Objectives
To describe why lists are useful in programming (§10.1).

To create lists (§10.2.1).

To invoke list’s append, insert, extend, remove, pop, index, count, sort, reverse methods
(§10.2.2).

To use the len, min/max, sum, and random.shuffle functions for a list (§10.2.3).

To access list elements using indexed variables (§10.2.4).

To obtain a sublist using the slicing operator [start:end] (§10.2.5).

To use +, *, and in/not in operators on lists (§10.2.6).

To traverse elements in a list using a for-each loop (§10.2.7).

To create lists using list comprehension (§10.2.8).

To compare lists using comparison operators (§10.2.9).

To split a string to a list using the str’s split method (§10.2.10).

To use lists in the application development (§§10.3–10.5).

To copy contents from one list to another (§10.6).

To develop and invoke functions with list arguments and return value (§10.7–10.9).

To search elements using the linear (§10.10.1) or binary (§10.10.2) search algorithm.

To sort a list using the selection sort (§10.11.1)

To sort a list using the insertion sort (§10.11.2).

To develop the bouncing ball animation using a list (§10.12).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Python Collections (Arrays)

There are four collection data types in the
Python programming language:
– List is a collection which is ordered and

changeable. Allows duplicate members.

– Tuple is a collection which is ordered and
unchangeable. Allows duplicate members.

– Set is a collection which is unordered and
unindexed. No duplicate members.

– Dictionary is a collection which is unordered,
changeable and indexed. No duplicate members. It
stores key-value pairs.

5

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
6

Creating Lists

list1 = list() # Create an empty list

list2 = list([2, 3, 4]) # Create a list with elements 2, 3, 4

list3 = list(["red", "green", "blue"]) # Create a list with strings

list4 = list(range(3, 6)) # Create a list with elements 3, 4, 5

list5 = list("abcd") # Create a list with characters a, b, c

list1 = [] # Same as list()

list2 = [2, 3, 4] # Same as list([2, 3, 4])

list3 = ["red", "green"] # Same as list(["red", "green"])

Creating list using the list class with the list() constructor

For convenience, you may create a list using the following syntax:

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

List Is a Sequence Type

Strings and lists are sequence types in

Python.

– A string is a sequence of characters,

– while a list is a sequence of any elements.

7

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

The common operations for

sequences

8

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
9

Functions for lists
>>> list1 = [2, 3, 4, 1, 32]

>>> len(list1)

5

>>> max(list1)

32

>>> min(list1)

1

>>> sum(list1)

42

>>> import random

>>> random.shuffle(list1) # Shuffle the items in the list

>>> list1

[4, 1, 2, 32, 3]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
10

Indexer Operator []

5.6

4.5

3.3

13.2

4.0

34.33

34.0

45.45

99.993

11123

myList = [5.6, 4.5, 3.3, 13.2, 4.0, 34.33, 34.0, 45.45, 99.993, 11123]

myList reference
myList[0]

myList[1]

myList[2]

myList[3]

myList[4]

myList[5]

myList[6]

myList[7]

myList[8]

myList[9]

Element value

list reference

variable

list element at

index 5

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
11

The +, *, [:], and in Operators

>>> list1 = [2, 3]

>>> list2 = [1, 9]

>>> list3 = list1 + list2

>>> list3

[2, 3, 1, 9]

>>> list3 = 2 * list1

>>> list3

[2, 3, 2, 3, 2, 3]

>>> list4 = list3[2 : 4]

>>> list4

[2, 3]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
12

The +, *, [:], and in Operators

>>> list1 = [2, 3, 5, 2, 33, 21]

>>> list1[-1]

21

>>> list1[-3]

2

>>> list1 = [2, 3, 5, 2, 33, 21]

>>> 2 in list1

True

>>> list1 = [2, 3, 5, 2, 33, 21]

>>> 2.5 in list1

False

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

List Slicing [start : end]

The index operator allows you to select an

element at the specified index.

The slicing operator returns a slice of the

list using the syntax list[start : end]. The

slice is a sublist from index start to index

end – 1.

13

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

List Slicing [start : end]
The starting index or ending index may be omitted. In this case, the
starting index is 0 and the ending index is the last index.

You can use a negative index in slicing if you want to start the
search from the end of the list.

If start >= end, list[start : end] returns an empty list. If end specifies
a position beyond the end of the list, Python will use the length of
the list for end instead.

14

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
15

Comparing Lists
>>>list1 = ["green", "red", "blue"]

>>>list2 = ["red", "blue", "green"]

>>>list2 == list1

False

>>>list2 != list1

True

>>>list2 >= list1

False

>>>list2 > list1

False

>>>list2 < list1

True

>>>list2 <= list1

True

• The comparison uses lexicographical

ordering:

• the first two elements are

compared, and if they differ this

determines the outcome of the

comparison;

• if they are equal, the next two

elements are compared, and so on,

until either list is exhausted.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
16

List Comprehension

List comprehensions provide a concise way to create items
from sequence. A list comprehension consists of brackets
containing an expression followed by a for clause, then zero
or more for or if clauses. The result will be a list resulting
from evaluating the expression. Here are some examples:

>>> list1 = [x for x range(0, 5)] # Returns a list of 0, 1, 2, 4

>>> list1

[0, 1, 2, 3, 4]

>>> list2 = [0.5 * x for x in list1]

>>> list2

[0.0, 0.5, 1.0, 1.5, 2.0]

>>> list3 = [x for x in list2 if x < 1.5]

>>> list3

[0.0, 0.5, 1.0]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
17

off-by-one Error

i = 0

while i <= len(lst):

print(lst[i])

i += 1

Programmers often mistakenly

execute a loop one time more or

less than intended. This kind of

mistake is commonly known as the

off-by-one error.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Loop Through a List

18

apple
banana
cherry

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Append, insert, remove

19

['apple', 'cherry']

['apple', 'orange', 'banana', 'cherry']

['apple', 'banana', 'cherry', 'orange']

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Pop, clear, del

20

[]

['banana', 'cherry']

['apple', 'banana']

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
21

Splitting a String to a List

items = "Welcome to the US".split()

print(items)

['Welcome', 'to', 'the', 'US']

items = "34#13#78#45".split("#")

print(items)

['34', '13', '78', '45']

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
22

list Methods

list

append(x: object): None

insert(index: int, x: object):

None

remove(x: object): None

index(x: object): int

count(x: object): int

sort(): None

reverse(): None

extend(l: list): None

pop([i]): object

Add an item x to the end of the list.

Insert an item x at a given index. Note that the first element in

the list has index 0.

Remove the first occurrence of the item x from the list.

Return the index of the item x in the list.

Return the number of times item x appears in the list.

Sort the items in the list.

Reverse the items in the list.

Append all the items in L to the list.

Remove the item at the given position and return it. The square
bracket denotes that parameter is optional. If no index is

specified, list.pop() removes and returns the last item in the

list.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
23

Problem: Lotto Numbers

Suppose you play the Pick-10 lotto. Each ticket has

10 unique numbers ranging from 1 to 99. You buy

a lot of tickets. You like to have your tickets to

cover all numbers from 1 to 99. Write a program

that reads the ticket numbers from a file and checks

whether all numbers are covered. Assume the last

number in the file is 0.

LottoNumbers RunLotto Numbers Sample Data

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
24

Problem: Lotto Numbers

False

False

False

False

.

.

 .

False

False

isCovered

 [0]

 [1]

[2]

 [3]

[98]

(a)

[97]

True

False

False

False

.

.

 .

False

False

isCovered

 [0]

 [1]

[2]

 [3]

[98]

(b)

[97]

True

True

False

False

.

.

 .

False

False

isCovered

 [0]

 [1]

[2]

 [3]

[98]

(c)

[97]

True

True

True

False

.

.

 .

False

False

isCovered

 [0]

 [1]

[2]

 [3]

[98]

(d)

[97]

True

True

True

False

.

.

 .

False

True

isCovered

 [0]

 [1]

[2]

 [3]

[98]

(e)

[97]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
25

Problem: Deck of Cards

The problem is to write a program that picks four cards

randomly from a deck of 52 cards. All the cards can be

represented using a list named deck, filled with initial

values 0 to 51, as follows:

deck = [x for x in range(0, 52)]

DeckOfCards Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
26

Problem: Deck of Cards, cont.

0

.

.

.

12

13

.

.

.

25

26

.

.

.

38

39

.

.

.

51

13 Spades (♠)

13 Hearts (♥)

13 Diamonds (♦)

13 Clubs (♣)

0

.

.

.

12

13

.

.

.

25

26

.

.

.

38

39

.

.

.

51

deck

[0]

.

.

.

[12]

[13]

.

.

.

[25]

[26]

.

.

.

[38]

[39]

.

.

.

[51]

Random shuffle

6

48

11

24

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

deck

[0]

[1]

[2]

[3]

[4]

[5]

.

.

.

[25]

[26]

.

.

.

[38]

[39]

.

.

.

[51]

Card number 6 is the

7 (6 % 13 = 6) of

Spades (7 / 13 is 0)

Card number 48 is the

10 (48 % 13 = 9) of

Clubs (48 / 13 is 3)

Card number 11 is the

Queen (11 % 13 = 11) of

Spades (11 / 13 is 0)

Card number 24 is the

Queen (24 % 13 = 11) of

Hearts (24 / 13 is 1)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
27

Problem: Deck of Cards, cont.

cardNumber / 13 =

0

Spades

1

Hearts

2

Diamonds

3

Clubs

cardNumber % 13 =

0

Ace

1

2

.

.

10

Jack

11

Queen

12

King

DeckOfCards Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
28

GUI: Deck of Cards

DeckOfCardsDeckOfCardsGUI

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
29

Copying Lists

Often, in a program, you need to duplicate a list or a part
of a list. In such cases you could attempt to use the
assignment statement (=), as follows:

list2 = list1;

Contents

of list1

list1

Contents

of list2

list2

Before the assignment

list2 = list1;

Contents

of list1

list1

Contents

of list2

list2

After the assignment

list2 = list1;

Garbage

.

You cannot copy a list simply by typing list2 = list1, because: list2 will only be
a reference to list1, and changes made in list1 will automatically also be made in list2

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Copy a List

30

['apple', 'banana', 'cherry']

['apple', 'banana', 'cherry']

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Join Two Lists

31

['a', 'b', 'c', 1, 2, 3]

['a', 'b', 'c', 1, 2, 3]

['a', 'b', 'c', 1, 2, 3]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
32

Passing Lists to Functios

def printList(lst):

for element in lst:

print(element)

Invoke the function

lst = [3, 1, 2, 6, 4, 2]

printList(lst)

Invoke the function

printList([3, 1, 2, 6, 4, 2])

Anonymous list

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
33

Pass By Value

Python uses pass-by-value to pass arguments to a

function.

There are important differences between passing

the values of variables of numbers and strings and

passing lists.

– Immutable objects

– Changeable objects

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
34

Pass By Value (Immutable objects)

For an argument of a number or a string, the

original value of the number and string outside

the function is not changed,

because numbers and strings are immutable in

Python.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
35

Pass By Value (changeable objects)

For an argument of a list, the value of the

argument is a reference to a list;

this reference value is passed to the function.

Semantically, it can be best described as pass-by-

sharing, i.e., the list in the function is the same as

the list being passed.

So if you change the list in the function, you will

see the change outside the function.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
36

def main():

x = 1 # x represents an int value

y = [1, 2, 3] # y represents a list

m(x, y) # Invoke f with arguments x and y

print("x is " + str(x))

print("y[0] is " + str(y[0]))

def m(number, numbers):

number = 1001 # Assign a new value to number

numbers[0] = 5555 # Assign a new value to numbers[0]

main()

Simple Example

x is 1

y[0] is 5555

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
37

Subtle Issues Regarding Default Arguments
def add(x, lst = []):

if not(x in lst):

lst.append(x)

return lst

list1 = add(1)

print(list1)

list2 = add(2)

print(list2)

list3 = add(3, [11, 12, 13, 14])

print(list3)

list4 = add(4)

print(list4)

[1]

[1, 2]

[11, 12, 13, 14]

[1, 2, 4]

Output

default value is

created only once.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
38

Returning a List from a Function

list1 = [1, 2, 3, 4, 5, 6]

list2 = reverse(list1)

 def reverse(list):

 result = []

 for element in list:

 result.insert(0, element)

 return result

list

result

Note that list already has the reverse method

list.reverse()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
39

Problem: Counting Occurrence of Each Letter

Generate 100 lowercase

letters randomly and assign

to a list of characters.

Count the occurrence of each

letter in the list.

CountLettersInList Run

…

…

chars[0]

chars[1]

…

…

chars[98]

chars[99]

…

…

counts[0]

counts[1]

…

…

counts[24]

counts[25]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
40

Searching Lists

Searching is the process of looking for a specific element in
a list; for example, discovering whether a certain score is
included in a list of scores. Searching is a common task in
computer programming. There are many algorithms and data
structures devoted to searching. In this section, two
commonly used approaches are discussed, linear search and
binary search.

The function for finding a key in the list

def linearSearch(lst, key):

 for i in range(0, len(lst)):

 if key == lst[i]:

 return i

 return -1

 lst

key Compare key with lst[i] for i = 0, 1, …

 [0] [1] [2] …

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
41

Linear Search

The linear search approach compares the key

element, key, sequentially with each element in

list. The method continues to do so until the

key matches an element in the list or the list is

exhausted without a match being found. If a

match is made, the linear search returns the

index of the element in the list that matches the

key. If no match is found, the search returns -1.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
42

Linear Search Animation

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

3

3

3

3

3

3

animation

Key List

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
43

http://www.cs.armstrong.edu/liang/animation/LinearSearc
hAnimation.html

Linear Search Animation
animation

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
44

Binary Search

For binary search to work, the elements in the

list must already be ordered. Without loss of

generality, assume that the list is in ascending

order.

e.g., 2 4 7 10 11 45 50 59 60 66 69 70 79

The binary search first compares the key with

the element in the middle of the list.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
45

Binary Search, cont.

If the key is less than the middle element,
you only need to search the key in the first
half of the list.

If the key is equal to the middle element,
the search ends with a match.

If the key is greater than the middle
element, you only need to search the key in
the second half of the list.

Consider the following three cases:

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
46

Binary Search

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

8

8

8

Key List

animation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
47

http://www.cs.armstrong.edu/liang/animation/BinarySearc
hAnimation.html

Binary Search Animation
animation

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
48

Binary Search, cont.

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

 2 4 7 10 11 45 50 59 60 66 69 70 79

 key is 11

 key < 50

 lst

mid

 [0] [1] [2] [3] [4] [5]

 key > 7

 key == 11

high low

mid high low

 lst

 [3] [4] [5]

mid high low

 lst

 2 4 7 10 11 45

 10 11 45

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
49

Binary Search, cont.

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

 2 4 7 10 11 45 50 59 60 66 69 70 79

 key is 54

 key > 50

 lst

mid

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

 key < 66

 key < 59

high low

mid high low

 lst

 [7] [8]

mid high low

 lst

 59 60 66 69 70 79

 59 60

 [6] [7] [8]

high low

 59 60

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
50

Binary Search, cont.

The binarySearch method returns the index of the

element in the list that matches the search key if it

is contained in the list. Otherwise, it returns

- insertion point - 1.

The insertion point is the point at which the key

would be inserted into the list.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
51

From Idea to Soluton
Use binary search to find the key in the list

def binarySearch(lst, key):

low = 0

high = len(lst) - 1

while high >= low:

mid = (low + high) // 2

if key < lst[mid]:

high = mid - 1

elif key == lst[mid]:

return mid

else:

low = mid + 1

return –low - 1 # Now high < low, key not found

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
52

Sorting Lists

Sorting, like searching, is also a common task in

computer programming. Many different algorithms

have been developed for sorting. This section

introduces two simple, intuitive sorting algorithms:

selection sort and insertion sort.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
53

Selection sort finds the largest number in the list and places it last. It then finds the largest
number remaining and places it next to last, and so on until the list contains only a single
number. Figure 6.17 shows how to sort the list {2, 9, 5, 4, 8, 1, 6} using selection sort.

Selection Sort

2 9 5 4 8 1 6

swap

Select 1 (the smallest) and swap it

with 2 (the first) in the list

1 9 5 4 8 2 6

swap

 The number 1 is now in the

correct position and thus no
longer needs to be considered.

1 2 5 4 8 9 6

swap

1 2 4 5 8 9 6

Select 2 (the smallest) and swap it

with 9 (the first) in the remaining

list

The number 2 is now in the
correct position and thus no

longer needs to be considered.

Select 4 (the smallest) and swap it

with 5 (the first) in the remaining

list

 The number 6 is now in the

correct position and thus no

longer needs to be considered.

1 2 4 5 8 9 6

Select 6 (the smallest) and swap it

with 8 (the first) in the remaining
list

1 2 4 5 6 9 8

swap

The number 6 is now in the

correct position and thus no

longer needs to be considered.

1 2 4 5 6 8 9

Select 8 (the smallest) and swap it

with 9 (the first) in the remaining

list

The number 8 is now in the

correct position and thus no

longer needs to be considered.

Since there is only one element
remaining in the list, sort is

completed

5 is the smallest and in the right

position. No swap is necessary

The number 5 is now in the

correct position and thus no

longer needs to be considered.

swap

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
54

http://www.cs.armstrong.edu/liang/animation/SelectionSo
rtAnimation.html

Selection Sort Animation
animation

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
55

From Idea to Solution
for i in range(0, len(lst)):

select the smallest element in lst[i.. len(lst)-1]

swap the smallest with lst[i], if necessary

lst[i] is in its correct position.

The next iteration apply on lst[i+1..len(lst)-1]

lst[0] lst[1] lst[2] lst[3] ... lst[10]

lst[0] lst[1] lst[2] lst[3] ... lst[10]

lst[0] lst[1] lst[2] lst[3] ... lst[10]

lst[0] lst[1] lst[2] lst[3] ... lst[10]

lst[0] lst[1] lst[2] lst[3] ... lst[10]

...

lst[0] lst[1] lst[2] lst[3] ... lst[10]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
56

Expand

for i in range(0, len(lst)):

select the smallest element in lst[i.. len(lst)-1]

swap the smallest with lst[i], if necessary

lst[i] is in its correct position.

The next iteration apply on lst[i+1..len(lst)-1]

currentMin = lst[i]

currentMinIndex = i

for j in range(i + 1, len(lst)):

if currentMin > lst[j]:

currentMin = lst[j]

currentMinIndex = j

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
57

Expand

for i in range(0, len(lst)):

select the smallest element in lst[i.. len(lst)-1]

swap the smallest with lst[i], if necessary

lst[i] is in its correct position.

The next iteration apply on lst[i+1..len(lst)-1]

Find the minimum in the lst[i..len(lst)-1]

currentMin = lst[i]

currentMinIndex = i

for j in range(i + 1, len(lst)):

if currentMin > lst[j]:

currentMin = lst[j]

currentMinIndex = j

Swap lst[i] with lst[currentMinIndex] if necessary

if currentMinIndex != i:

lst[currentMinIndex] = lst[i]

lst[i] = currentMin

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
58

Wrap it in a Function
The function for sorting the numbers

def selectionSort(lst):

for i in range(0, len(lst) - 1):

Find the minimum in the lst[i..len(lst)-1]

currentMin = lst[i]

currentMinIndex = i

for j in range(i + 1, len(lst)):

if currentMin > lst[j]:

currentMin = lst[j]

currentMinIndex = j

Swap lst[i] with lst[currentMinIndex] if necessary

if currentMinIndex != i:

lst[currentMinIndex] = lst[i]

lst[i] = currentMin

Invoke it

selectionSort(yourList)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
59

Insertion Sort
myList = [2, 9, 5, 4, 8, 1, 6] # Unsorted

The insertion sort
algorithm sorts a list
of values by
repeatedly inserting
an unsorted element
into a sorted sublist
until the whole list
is sorted.

2 9 5 4 8 1 6

Step 1: Initially, the sorted sublist contains the

first element in the list. Insert 9 into the sublist.

2 9 5 4 8 1 6

Step2: The sorted sublist is [2, 9]. Insert 5 into the

sublist.

2 5 9 4 8 1 6

Step 3: The sorted sublist is [2, 5, 9]. Insert 4 into

the sublist.

2 4 5 9 8 1 6

Step 4: The sorted sublist is [2, 4, 5, 9]. Insert 8
into the sublist.

2 4 5 8 9 1 6

Step 5: The sorted sublist is [2, 4, 5, 8, 9]. Insert

1 into the sublist.

1 2 4 5 8 9 6

Step 6: The sorted sublist is [1, 2, 4, 5, 8, 9].
Insert 6 into the sublist.

1 2 4 5 6 8 9

Step 7: The entire list is now sorted

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
60

http://www.cs.armstrong.edu/liang/animation/InsertionSor
tAnimation.html

Insertion Sort Animation
animation

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
61

Insertion Sort

2 9 5 4 8 1 6
2 9 5 4 8 1 6

2 5 9 4 8 1 6

2 4 5 8 9 1 6

1 2 4 5 8 9 6

2 4 5 9 8 1 6

1 2 4 5 6 8 9

myList = [2, 9, 5, 4, 8, 1, 6] # Unsorted

animation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
62

How to Insert?

The insertion sort
algorithm sorts a list
of values by
repeatedly inserting
an unsorted element
into a sorted sublist
until the whole list
is sorted.

 [0] [1] [2] [3] [4] [5] [6]

 2 5 9 4 list Step 1: Save 4 to a temporary variable currentElement

 [0] [1] [2] [3] [4] [5] [6]

 2 5 9 list Step 2: Move list[2] to list[3]

 [0] [1] [2] [3] [4] [5] [6]

 2 5 9 list Step 3: Move list[1] to list[2]

 [0] [1] [2] [3] [4] [5] [6]

 2 4 5 9 list Step 4: Assign currentElement to list[1]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
63

From Idea to Solution
for i in range(1, len(lst)):

insert lst[i] into a sorted sublist lst[0..i-1] so that

lst[0..i] is sorted.

lst[0]

lst[0] lst[1]

lst[0] lst[1] lst[2]

lst[0] lst[1] lst[2] lst[3]

lst[0] lst[1] lst[2] lst[3] ...

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
64

From Idea to Solution
for i in range(1, len(lst)):

insert lst[i] into a sorted sublist lst[0..i-1] so that

lst[0..i] is sorted.

InsertSort

Expand
k = i - 1

while k >= 0 and lst[k] > currentElement:

lst[k + 1] = lst[k]

k -= 1

Insert the current element into lst[k + 1]

lst[k + 1] = currentElement

html/InsertionSort.html

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
65

Case Studies: Bouncing Balls

BouncingBalls Run

 Ball

x: int

y: int

dx: int

dy: int

color: Color

radius: int

The x-, y-coordinates for the center of the

ball. By default, it is (0, 0).

dx and dy are the increment for (x, y).

The color of the ball.

The radius of the ball.

