
Stack and Queue

Stack Overview

• Stack ADT

• Basic operations of stack

– Pushing, popping etc.

• Implementations of stacks using

– array

– linked list

The Stack ADT

• A stack is a list with the restriction
– that insertions and deletions can only be performed at the top of

the list

– The other end is called bottom

• Fundamental operations:
– Push: Equivalent to an insert

– Pop: Deletes the most recently inserted element

– Top: Examines the most recently inserted element

Stack ADT

• Stacks are less flexible

but are more efficient and easy to implement

• Stacks are known as LIFO (Last In, First Out)
lists.

– The last element inserted will be the first to be
retrieved

Push and Pop

• Primary operations: Push and Pop

• Push

– Add an element to the top of the stack

• Pop

– Remove the element at the top of the stack

A
top

empty stack

top

top

top

push an element push another

A

B

pop

A

Implementation of Stacks

• Any list implementation could be used to
implement a stack

– Arrays (static: the size of stack is given initially)

– Linked lists (dynamic: never become full)

• We will explore implementations based on
array and linked list

• Let’s see how to use an array to implement a
stack first

Array Implementation

• Need to declare an array size ahead of time
• Associated with each stack is TopOfStack

– for an empty stack, set TopOfStack to -1

• Push
– (1) Increment TopOfStack by 1.
– (2) Set Stack[TopOfStack] = X

• Pop
– (1) Set return value to Stack[TopOfStack]
– (2) Decrement TopOfStack by 1

• These operations are performed in very fast constant
time

Stack class

class Stack {

public:

Stack(int size = 10); // constructor

~Stack() { delete [] values; } // destructor

bool IsEmpty() { return top == -1; }

bool IsFull() { return top == maxTop; }

double Top();

void Push(const double x);

double Pop();

void DisplayStack();

private:

int maxTop; // max stack size = size - 1

int top; // current top of stack

double* values; // element array

};

Stack class

• Attributes of Stack
– maxTop: the max size of stack
– top: the index of the top element of stack
– values: point to an array which stores elements of stack

• Operations of Stack
– IsEmpty: return true if stack is empty, return false

otherwise
– IsFull: return true if stack is full, return false otherwise
– Top: return the element at the top of stack
– Push: add an element to the top of stack
– Pop: delete the element at the top of stack
– DisplayStack: print all the data in the stack

Create Stack

• The constructor of Stack
– Allocate a stack array of size. By default,
size = 10.

– When the stack is full, top will have its maximum
value, i.e. size – 1.

– Initially top is set to -1. It means the stack is empty.

Stack::Stack(int size /*= 10*/) {

maxTop = size - 1;

values = new double[size];

top = -1;

}

Although the constructor dynamically allocates the stack array,

the stack is still static. The size is fixed after the initialization.

Push Stack

• void Push(const double x);

– Push an element onto the stack
– If the stack is full, print the error information.
– Note top always represents the index of the top

element. After pushing an element, increment top.

void Stack::Push(const double x) {

if (IsFull())

cout << "Error: the stack is full." << endl;

else

values[++top] = x;

}

Pop Stack

• double Pop()

– Pop and return the element at the top of the stack
– If the stack is empty, print the error information. (In

this case, the return value is useless.)
– Don’t forgot to decrement top

double Stack::Pop() {

if (IsEmpty()) {

cout << "Error: the stack is empty." << endl;

return -1;

}

else {

return values[top--];

}

}

Stack Top

• double Top()

– Return the top element of the stack
– Unlike Pop, this function does not remove the top

element

double Stack::Top() {

if (IsEmpty()) {

cout << "Error: the stack is empty." << endl;

return -1;

}

else

return values[top];

}

Printing all the elements

• void DisplayStack()

– Print all the elements

void Stack::DisplayStack() {

cout << "top -->";

for (int i = top; i >= 0; i--)

cout << "\t|\t" << values[i] << "\t|" << endl;

cout << "\t|---------------|" << endl;

}

Using Stack

int main(void) {

Stack stack(5);

stack.Push(5.0);

stack.Push(6.5);

stack.Push(-3.0);

stack.Push(-8.0);

stack.DisplayStack();

cout << "Top: " << stack.Top() << endl;

stack.Pop();

cout << "Top: " << stack.Top() << endl;

while (!stack.IsEmpty()) stack.Pop();

stack.DisplayStack();

return 0;

}

result

• Now let us implement a stack based on a
linked list

• To make the best out of the code of List, we
implement Stack by inheriting List
– To let Stack access private member head, we

make Stack as a friend of List

Implementation based on Linked List

class List {

public:

List(void) { head = NULL; } // constructor

~List(void); // destructor

bool IsEmpty() { return head == NULL; }

Node* InsertNode(int index, double x);

int FindNode(double x);

int DeleteNode(double x);

void DisplayList(void);

private:

Node* head;

friend class Stack;

};

Implementation based on Linked List

class Stack : public List {

public:

Stack() {} // constructor

~Stack() {} // destructor

double Top() {

if (head == NULL) {

cout << "Error: the stack is empty." << endl;

return -1;

}

else

return head->data;

}

void Push(const double x) { InsertNode(0, x); }

double Pop() {

if (head == NULL) {

cout << "Error: the stack is empty." << endl;

return -1;

}

else {

double val = head->data;

DeleteNode(val);

return val;

}

}

void DisplayStack() { DisplayList(); }

};

Note: the stack

implementation

based on a linked

list will never be full.

Balancing Symbols

• To check that every right brace, bracket, and
parentheses must correspond to its left counterpart
– e.g. [()] is legal, but [(]) is illegal

• Algorithm
(1) Make an empty stack.
(2) Read characters until end of file

i. If the character is an opening symbol, push it onto the stack
ii. If it is a closing symbol, then if the stack is empty, report an error
iii. Otherwise, pop the stack. If the symbol popped is not the

corresponding opening symbol, then report an error
(3) At end of file, if the stack is not empty, report an error

Postfix Expressions

• Calculate 4.99 * 1.06 + 5.99 + 6.99 * 1.06
– Need to know the precedence rules

• Postfix (reverse Polish) expression
– 4.99 1.06 * 5.99 + 6.99 1.06 * +

• Use stack to evaluate postfix expressions
– When a number is seen, it is pushed onto the stack

– When an operator is seen, the operator is applied to the 2
numbers that are popped from the stack. The result is pushed onto
the stack

• Example
– evaluate 6 5 2 3 + 8 * + 3 + *

• The time to evaluate a postfix expression is O(N)
– processing each element in the input consists of stack operations

and thus takes constant time

Queue Overview

• Queue ADT

• Basic operations of queue

– Enqueuing, dequeuing etc.

• Implementation of queue

– Array

– Linked list

Queue ADT

• Like a stack, a queue is also a list. However,
with a queue, insertion is done at one end,
while deletion is performed at the other
end.

• Accessing the elements of queues follows a
First In, First Out (FIFO) order.
– Like customers standing in a check-out line in a

store, the first customer in is the first customer
served.

The Queue ADT

• Another form of restricted list
– Insertion is done at one end, whereas deletion is

performed at the other end

• Basic operations:
– enqueue: insert an element at the rear of the list
– dequeue: delete the element at the front of the list

• First-in First-out (FIFO) list

Enqueue and Dequeue

• Primary queue operations: Enqueue and Dequeue

• Like check-out lines in a store, a queue has a front
and a rear.

• Enqueue
– Insert an element at the rear of the queue

• Dequeue
– Remove an element from the front of the queue

Insert

(Enqueue)
Remove

(Dequeue) rearfront

Implementation of Queue

• Just as stacks can be implemented as arrays or
linked lists, so with queues.

• Dynamic queues have the same advantages
over static queues as dynamic stacks have
over static stacks

Queue Implementation of Array

• There are several different algorithms to
implement Enqueue and Dequeue

• Naïve way
– When enqueuing, the front index is always fixed

and the rear index moves forward in the array.

front

rear

Enqueue(3)

3

front

rear

Enqueue(6)

3 6

front

rear

Enqueue(9)

3 6 9

Queue Implementation of Array

• Naïve way
– When enqueuing, the front index is always fixed

and the rear index moves forward in the array.
– When dequeuing, the element at the front the

queue is removed. Move all the elements after it by
one position. (Inefficient!!!)

Dequeue()

front

rear

6 9

Dequeue() Dequeue()

front

rear

9

rear = -1

front

Queue Implementation of Array

• Better way
– When an item is enqueued, make the rear index

move forward.
– When an item is dequeued, the front index moves by

one element towards the back of the queue (thus
removing the front item, so no copying to
neighboring elements is needed).

XXXXOOOOO (rear)

OXXXXOOOO (after 1 dequeue, and 1 enqueue)

OOXXXXXOO (after another dequeue, and 2 enqueues)

OOOOXXXXX (after 2 more dequeues, and 2 enqueues)

(front)

The problem here is that the rear index cannot move beyond the

last element in the array.

Implementation using Circular Array

• Using a circular array

• When an element moves past the end of a
circular array, it wraps around to the beginning,
e.g.

– OOOOO7963  4OOOO7963 (after Enqueue(4))

– After Enqueue(4), the rear index moves from 3 to 4.

Empty or Full?

• Empty queue
– back = front - 1

• Full queue?
– the same!
– Reason: n values to represent n+1 states

• Solutions
– Use a boolean variable to say explicitly whether the

queue is empty or not
– Make the array of size n+1 and only allow n elements to

be stored
– Use a counter of the number of elements in the queue

Queue Implementation of Linked List

class Queue {

public:

Queue(int size = 10); // constructor

~Queue() { delete [] values; } // destructor

bool IsEmpty(void);

bool IsFull(void);

bool Enqueue(double x);

bool Dequeue(double & x);

void DisplayQueue(void);

private:

int front; // front index

int rear; // rear index

int counter; // number of elements

int maxSize; // size of array queue

double* values; // element array

};

Queue Class

• Attributes of Queue
– front/rear: front/rear index

– counter: number of elements in the queue

– maxSize: capacity of the queue

– values: point to an array which stores elements of the queue

• Operations of Queue

– IsEmpty: return true if queue is empty, return false otherwise

– IsFull: return true if queue is full, return false otherwise

– Enqueue: add an element to the rear of queue

– Dequeue: delete the element at the front of queue

– DisplayQueue: print all the data

Create Queue

• Queue(int size = 10)
– Allocate a queue array of size. By default, size =
10.

– front is set to 0, pointing to the first element of the
array

– rear is set to -1. The queue is empty initially.

Queue::Queue(int size /* = 10 */) {

values = new double[size];

maxSize = size;

front = 0;

rear = -1;

counter = 0;

}

IsEmpty & IsFull

• Since we keep track of the number of elements
that are actually in the queue: counter, it is
easy to check if the queue is empty or full.

bool Queue::IsEmpty() {

if (counter) return false;

else return true;

}

bool Queue::IsFull() {

if (counter < maxSize) return false;

else return true;

}

Enqueue

bool Queue::Enqueue(double x) {

if (IsFull()) {

cout << "Error: the queue is full." << endl;

return false;

}

else {

// calculate the new rear position (circular)

rear = (rear + 1) % maxSize;

// insert new item

values[rear] = x;

// update counter

counter++;

return true;

}

}

Dequeue

bool Queue::Dequeue(double & x) {

if (IsEmpty()) {

cout << "Error: the queue is empty." << endl;

return false;

}

else {

// retrieve the front item

x = values[front];

// move front

front = (front + 1) % maxSize;

// update counter

counter--;

return true;

}

}

Printing the elements

void Queue::DisplayQueue() {

cout << "front -->";

for (int i = 0; i < counter; i++) {

if (i == 0) cout << "\t";

else cout << "\t\t";

cout << values[(front + i) % maxSize];

if (i != counter - 1)

cout << endl;

else

cout << "\t<-- rear" << endl;

}

}

Using Queue

int main(void) {

Queue queue(5);

cout << "Enqueue 5 items." << endl;

for (int x = 0; x < 5; x++)

queue.Enqueue(x);

cout << "Now attempting to enqueue again..." << endl;

queue.Enqueue(5);

queue.DisplayQueue();

double value;

queue.Dequeue(value);

cout << "Retrieved element = " << value << endl;

queue.DisplayQueue();

queue.Enqueue(7);

queue.DisplayQueue();

return 0;

}

Stack Implementation based on Linked List
class Queue {

public:

Queue() { // constructor

front = rear = NULL;

counter = 0;

}

~Queue() { // destructor

double value;

while (!IsEmpty()) Dequeue(value);

}

bool IsEmpty() {

if (counter) return false;

else return true;

}
void Enqueue(double x);

bool Dequeue(double & x);

void DisplayQueue(void);

private:

Node* front; // pointer to front node

Node* rear; // pointer to last node

int counter; // number of elements

};

Enqueue

void Queue::Enqueue(double x) {

Node* newNode = new Node;

newNode->data = x;

newNode->next = NULL;

if (IsEmpty()) {

front = newNode;

rear = newNode;

}

else {

rear->next = newNode;

rear = newNode;

}

counter++;

}

8

rear

rear

newNode

5

58

Dequeue

bool Queue::Dequeue(double & x) {

if (IsEmpty()) {

cout << "Error: the queue is empty." << endl;

return false;

}

else {

x = front->data;

Node* nextNode = front->next;

delete front;

front = nextNode;

counter--;

}

}

8

front

5

583

front

Printing all the elements

void Queue::DisplayQueue() {

cout << "front -->";

Node* currNode = front;

for (int i = 0; i < counter; i++) {

if (i == 0) cout << "\t";

else cout << "\t\t";

cout << currNode->data;

if (i != counter - 1)

cout << endl;

else

cout << "\t<-- rear" << endl;

currNode = currNode->next;

}

}

Result

• Queue implemented using linked list will be
never full

based on array based on linked list

