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Data types I

• We type data--classify it into various categories--such as 
int, boolean, String, Applet

– A data type represents a set of possible values, such as 
{..., -2, -1, 0, 1, 2, ...}, or {true, false}

• By typing our variables, we allow the computer to find 
some of our errors

– Some operations only make sense when applied to 
certain kinds of data--multiplication, searching

• Typing simplifies internal representation

– A String requires more and different storage than a 
boolean
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Data types II

• A data type is characterized by:

– a set of values

– a data representation, which is common to all these 
values, and 

– a set of operations, which can be applied uniformly 
to all these values
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Primitive types in Java

• Java provides eight primitive types:
– boolean
– char, byte, short, int, long
– float, double

• Each primitive type has
– a set of values
– a data representation
– a set of operations

• These are “set in stone”—there is nothing the 
programmer can do to change anything about them
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Primitive types as data types

Type Values Representation Operations 

boolean true, false Single byte &&, ||, ! 

char, byte, 
short, int, 
long 

Integers of 
varying sizes 

Two’s complement +, -, *, /, 
others 

float, 
double 

Floating point 
numbers of 
varying sizes 
and precisions 

Two’s complement 
with exponent and 
mantissa 

+, -, *, /, 
others 
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Classes in Java

• A class is a data type

– The possible values of a class are called objects

– The data representation is a reference (pointer) 
to a block of storage

• The structure of this block is defined by the fields 
(both inherited and immediate) of the class

– The operations on the objects are called methods

• Many classes are defined in Java’s packages

• You can (and must) define your own, as well
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Methods and operators

• An operator typically
– Is written with non-alphabetic characters: +, *, 

++, +=, &&, etc.

– Is written as prefix, infix, or postfix: -x, x+y, 
x++

– Has only one or two arguments, or operands

• A method (or function) typically
– Is written with letters, and its arguments are 

enclosed in parentheses: toString(), 
Math.abs(n)

– Has any (predetermined) number of arguments
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Insertion into a list
• There are many ways you could insert a new node into a list:

• Is it a good idea to supply all of these?

• If not, why not?

• As the new first element

• As the new last element

• Before a given node

• After a given node

• Before a given value

• After a given value

• Before the nth element

• After the nth element

• Before the nth from the end

• After the nth from the end

• In the correct location to keep

the list in sorted order
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Cognitive load

• Human minds are limited—you can’t 
remember everything
– You probably don’t even remember all the Java operators for integers

• What’s the difference between >> and >>> ?

• What about between << and <<< ?

• We want our operators (and methods) to be 
useful and worth remembering
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Efficiency

• A list is just a sequence of values—it could be implemented 
by a linked list or by an array

– Inserting as a new first element is efficient for a linked 
list representation, inefficient for an array

– Accessing the nth element is efficient for an array 
representation, inefficient for a linked list

– Inserting in the nth position is efficient for neither

• Do we want to make it easy for the user to be inefficient?

• Do we want the user to have to know the implementation?
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Abstract Data Types

• An Abstract Data Type (ADT) is:

– a set of values

– a set of operations, which can be applied 
uniformly to all these values

• To abstract is to leave out information, 
keeping (hopefully) the more important 
parts

– What part of a Data Type does an ADT leave 
out?
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Data Structures
• Many kinds of data consist of multiple parts, organized 

(structured) in some way
• A data structure is simply some way of organizing a value that 

consists of multiple parts
– Hence, an array is a data structure, but an integer is not

• When we talk about data structures, we are talking about the 
implementation of a data type

• If I talk about the possible values of, say, complex numbers, 
and the operations I can perform with them, I am talking 
about them as an ADT

• If I talk about the way the parts (“real” and “imaginary”) of a 
complex number are stored in memory, I am talking about a 
data structure

• An ADT may be implemented in several different ways
– A complex number might be stored as two separate doubles, or as an 

array of two doubles, or even in some bizarre way
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Data representation in an ADT

• An ADT must obviously have some kind of 
representation for its data

– The user need not know the representation

– The user should not be allowed to tamper with 
the representation

– Solution: Make all data private

• But what if it’s really more convenient for 
the user to have direct access to the data?

– Solution: Use setters and getters
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Example of setters and getters

class Pair {

private int first, last;

public getFirst() { return first; }

public setFirst(int first) { this.first = first; 
}

public getLast() { return last; }

public setLast(int last) { this.last = last; }

}
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Naming setters and getters

• Setters and getters should be named by:
– Capitalizing the first letter of the variable (first

becomes First), and

– Prefixing the name with get or set (setFirst)

– For boolean variables, replace get with is (for 
example, isRunning) 

• This is more than just a convention—if and 
when you start using JavaBeans, it becomes a 
requirement
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What’s the point?

• Setters and getters allow you to keep control of your 
implementation

• For example, you decide to define a Point in a plane by its x-y 
coordinates:

– class Point { public int x; public int y; }
• Later on, as you gradually add methods to this class, you 

decide that it’s more efficient to represent a point by its angle 
and distance from the origin, θ and ρ

• Sorry, you can’t do that—you’ll break too much code that 
accesses x and y directly

• If you had used setters and getters, you could redefine them 
to compute x and y from θ and ρ
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Contracts

• Every ADT should have a contract (or 
specification) that:
– Specifies the set of valid values of the ADT

– Specifies, for each operation of the ADT:
• Its name

• Its parameter types

• Its result type, if any

• Its observable behavior

– Does not specify:
• The data representation

• The algorithms used to implement the operations
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Importance of the contract

• A contract is an agreement between two parties; in 
this case

– The implementer of the ADT, who is concerned 
with making the operations correct and efficient

– The applications programmer, who just wants to 
use the ADT to get a job done

• It doesn’t matter if you are both of these parties; the 
contract is still essential for good code

• This separation of concerns is essential in any large 
project
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Promise no more than necessary
• For a general API, the implementer should provide as 

much generality as feasible
• But for a specific program, the class author should 

provide only what is essential at the moment
– In Extreme Programming terms, “You ain’t gonna 

need it!”
– In fact, XP practice is to remove functionality that 

isn’t currently needed!
– Your documentation should not expose anything 

that the application programmer does not need to 
know

• If you design for generality, it’s easy to add functionality 
later—but removing it may have serious consequences
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Implementing an ADT
• To implement an ADT, you need to choose:

– a data representation
• must be able to represent all necessary values of the ADT
• should be private

– an algorithm for each of the necessary operations
• must be consistent with the chosen representation
• all auxiliary (helper) operations that are not in the contract 

should be private

• Remember: Once other people (or other classes) 
are using your class:
– It’s easy to add functionality
– You can only remove functionality if no one is using it!
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Example contract (Javadoc)
• General description of class

/**
* Each value is a die (singular of dice) with n sides,
* numbered 1 to n, with one face showing.
*/
public class Die

• Constructor
/**
* Constructs a die with faces numbered 1 thru numberOfSides.
*/
public Die(int numberOfSides)

• Accessor
/**
* Returns the result of the previous roll.
*/
int lastRoll()

• Transformer (mutative)
/**
* Returns the result of a new roll of the die.
*/
int roll()
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Responsibilities

• A class is responsible for its own values

– It should protect them from careless or malicious users

• Ideally, a class should be written to be generally useful

– The goal is to make the class reusable

– The class should not be responsible for anything 
specific to the application in which it is used

• In practice, most classes are application-specific

• Java’s classes are, on the whole, extremely well designed

– They weren’t written specifically for your program

– Strive to make your classes more like Java’s!
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Summary

• A Data Type describes values, 
representations, and operations

• An Abstract Data Type describes values and 
operations, but not representations
– An ADT should protect its data and keep it valid

• All, or nearly all, data should be private

• Access to data should be via getters and setters

– An ADT should provide:
• A contract

• A necessary and sufficient set of operations



The ADT List

• ADT List operations
– Create an empty list

– Determine whether a list is empty

– Determine the number of items in a list

– Add an item at a given position in the list

– Remove the item at a given position in the list

– Remove all the items from the list

– Retrieve (get) the item at a given position in the list

• Items are referenced by their position within the 
list



The ADT List

• ADT List operations – needed ?

– Remove all the items from the list



The ADT List

• ADT List operations – all needed ?

– Remove all the items from the list

• Determine number of items n in the list

• for i=1 to n remove item at position i



The ADT List

• Specifications of the ADT operations

– Define the functionality of the ADT list

– Do not specify how to store the list or how to 
perform the operations

• ADT operations can be used in an application 
without the knowledge of how the operations 
will be implemented



The ADT List

The wall between display List and the 
implementation of the ADT list



The ADT Sorted List

• The ADT sorted list

– Maintains items in sorted order

– Inserts and deletes items by their values, not their 
positions



Designing an ADT

• The design of an ADT should evolve naturally 
during the problem-solving process

• Questions to ask when designing an ADT

– What data does a problem require?

– What operations does a problem require?



Implementing ADTs

• Choosing the data structure to represent the 
ADT’s data is a part of implementation

– Choice of a data structure depends on

• Details of the ADT’s operations

• Context in which the operations will be used

• Implementation details should be hidden 
behind a wall of ADT operations

– A program would only be able to access the data 
structure using the ADT operations



The List ADT

• A sequence of zero or more elements

A1, A2, A3, … AN

• N: length of the list

• A1: first element

• AN: last element

• Ai: position i

• If N=0, then empty list

• Linearly ordered

– Ai precedes Ai+1

– Ai follows Ai-1



Operations

• printList: print the list

• makeEmpty: create an empty list

• find: locate the position of an object in a list

– list: 34,12, 52, 16, 12

– find(52)  3

• insert: insert an object to a list

– insert(x,3)  34, 12, 52, x, 16, 12

• remove: delete an element from the list

– remove(52)  34, 12, x, 16, 12

• findKth: retrieve the element at a certain position



Implementation of an ADT

• Choose a data structure to represent the ADT

– E.g. arrays, etc.

• Each operation associated with the ADT is 
implemented by one or more subroutines

• Two standard implementations for the list ADT

– Array-based

– Linked list



Array Implementation

• Elements are stored in contiguous array 
positions



Array Implementation...
• Requires an estimate of the maximum size of the list

 waste space

• printList and find: linear

• findKth: constant

• insert and delete:  slow

– e.g. insert at position 0 (making a new element)

• requires first pushing the entire array down one spot to make 
room

– e.g. delete at position 0

• requires shifting all the elements in the list up one

– On average, half of the lists needs to be moved for either 
operation



Pointer Implementation (Linked List)

• Ensure that the list is not stored contiguously
– use a linked list
– a series of structures that are not necessarily adjacent in 

memory

 Each node contains the element and a pointer to a 

structure containing its successor

the last cell’s next link points to NULL

 Compared to the array implementation, 

the pointer implementation uses only as much space as is needed 

for the elements currently on the list

but requires space for the pointers in each cell



Linked Lists

• A linked list is a series of connected nodes

• Each node contains at least
– A piece of data (any type)

– Pointer to the next node in the list

• Head: pointer to the first node

• The last node points to NULL

A 

Head

B C

A

data pointer

node



A Simple Linked List Class

• We use two classes: Node and List

• Declare Node class for the nodes

– data: double-type data in this example

– next: a pointer to the next node in the list

class Node {

public:

double data; // data

Node* next; // pointer to next

};



A Simple Linked List Class

• Declare List, which contains
– head: a pointer to the first node in the list. 

Since the list is empty initially, head is set to NULL

– Operations on List

class List {

public:

List(void) { head = NULL; } // constructor

~List(void); // destructor

bool IsEmpty() { return head == NULL; }

Node* InsertNode(int index, double x);

int FindNode(double x);

int DeleteNode(double x);

void DisplayList(void);

private:

Node* head;

};



A Simple Linked List Class 

• Operations of List

– IsEmpty: determine whether or not the list is 
empty

– InsertNode: insert a new node at a particular 
position

– FindNode: find a node with a given value

– DeleteNode: delete a node with a given value

– DisplayList: print all the nodes in the list



Inserting a new node

• Node* InsertNode(int index, double x) 

– Insert a node with data equal to x after the index’th elements. (i.e., 

when index = 0, insert the node as the first element; 

when index = 1, insert the node after the first element, and so on)

– If the insertion is successful, return the inserted node. 

Otherwise, return NULL. 
(If index is < 0 or > length of the list, the insertion will fail.)

• Steps
1. Locate index’th element

2. Allocate memory for the new node

3. Point the new node to its successor

4. Point the new node’s predecessor to the new node
newNode

index’th 

element



Inserting a new node

• Possible cases of InsertNode
1. Insert into an empty list

2. Insert in front

3. Insert at back

4. Insert in middle

• But, in fact, only need to handle two cases
– Insert as the first node (Case 1 and Case 2)

– Insert in the middle or at the end of the list (Case 3 and 
Case 4)



Inserting a new node
Node* List::InsertNode(int index, double x) {

if (index < 0) return NULL;

int currIndex = 1;

Node* currNode = head;

while (currNode && index > currIndex) {

currNode = currNode->next;

currIndex++;

}

if (index > 0 && currNode == NULL) return NULL;

Node* newNode = new Node;

newNode->data = x;

if (index == 0) {

newNode->next = head;

head = newNode;

}

else {

newNode->next = currNode->next;

currNode->next = newNode;

}

return newNode;

}

Try to locate 
index’th node. If it 

doesn’t exist, 
return NULL.



Inserting a new node
Node* List::InsertNode(int index, double x) {

if (index < 0) return NULL;

int currIndex = 1;

Node* currNode = head;

while (currNode && index > currIndex) {

currNode = currNode->next;

currIndex++;

}

if (index > 0 && currNode == NULL) return NULL;

Node* newNode = new Node;

newNode->data = x;

if (index == 0) {

newNode->next = head;

head = newNode;

}

else {

newNode->next = currNode->next;

currNode->next = newNode;

}

return newNode;

}

Create a new node



Inserting a new node
Node* List::InsertNode(int index, double x) {

if (index < 0) return NULL;

int currIndex = 1;

Node* currNode = head;

while (currNode && index > currIndex) {

currNode = currNode->next;

currIndex++;

}

if (index > 0 && currNode == NULL) return NULL;

Node* newNode = new Node;

newNode->data = x;

if (index == 0) {

newNode->next = head;

head = newNode;

}

else {

newNode->next = currNode->next;

currNode->next = newNode;

}

return newNode;

}

Insert as first element

head

newNode



Inserting a new node
Node* List::InsertNode(int index, double x) {

if (index < 0) return NULL;

int currIndex = 1;

Node* currNode = head;

while (currNode && index > currIndex) {

currNode = currNode->next;

currIndex++;

}

if (index > 0 && currNode == NULL) return NULL;

Node* newNode = new Node;

newNode->data = x;

if (index == 0) {

newNode->next = head;

head = newNode;

}

else {

newNode->next = currNode->next;

currNode->next = newNode;

}

return newNode;

}

Insert after currNode

newNode

currNode



Finding a node

• int FindNode(double x)

– Search for a node with the value equal to x in the list.

– If such a node is found, return its position. Otherwise, return 0.

int List::FindNode(double x) {

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data != x) {

currNode = currNode->next;

currIndex++;

}

if (currNode) return currIndex;

return 0;

}



Deleting a node

• int DeleteNode(double x)

– Delete a node with the value equal to x from the list.

– If such a node is found, return its position. Otherwise, return 0.

• Steps
– Find the desirable node (similar to FindNode)

– Release the memory occupied by the found node

– Set the pointer of the predecessor of the found node to the 
successor of the found node

• Like InsertNode, there are two special cases

– Delete first node

– Delete the node in middle or at the end of the list



Deleting a node
int List::DeleteNode(double x) {

Node* prevNode = NULL;

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data != x) {

prevNode = currNode;

currNode = currNode->next;

currIndex++;

}

if (currNode) {

if (prevNode) {

prevNode->next = currNode->next;

delete currNode;

}

else {

head = currNode->next;

delete currNode;

}

return currIndex;

}

return 0;

}

Try to find the node with 
its value equal to x



Deleting a node
int List::DeleteNode(double x) {

Node* prevNode = NULL;

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data != x) {

prevNode = currNode;

currNode = currNode->next;

currIndex++;

}

if (currNode) {

if (prevNode) {

prevNode->next = currNode->next;

delete currNode;

}

else {

head = currNode->next;

delete currNode;

}

return currIndex;

}

return 0;

}

currNodeprevNode



Deleting a node
int List::DeleteNode(double x) {

Node* prevNode = NULL;

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data != x) {

prevNode = currNode;

currNode = currNode->next;

currIndex++;

}

if (currNode) {

if (prevNode) {

prevNode->next = currNode->next;

delete currNode;

}

else {

head = currNode->next;

delete currNode;

}

return currIndex;

}

return 0;

}

currNodehead



Printing all the elements

• void DisplayList(void)

– Print the data of all the elements 

– Print the number of the nodes in the list
void List::DisplayList()

{

int num = 0;

Node* currNode = head;

while (currNode != NULL){

cout << currNode->data << endl;

currNode = currNode->next;

num++;

}

cout << "Number of nodes in the list: " << num << endl;

}



Destroying the list

• ~List(void)

– Use the destructor to release all the memory used by the list.

– Step through the list and delete each node one by one.

List::~List(void) {

Node* currNode = head, *nextNode = NULL;

while (currNode != NULL)

{

nextNode = currNode->next;

// destroy the current node

delete currNode;

currNode = nextNode;

}

}



Using List

int main(void)

{

List list;

list.InsertNode(0, 7.0); // successful

list.InsertNode(1, 5.0); // successful

list.InsertNode(-1, 5.0); // unsuccessful

list.InsertNode(0, 6.0); // successful

list.InsertNode(8, 4.0); // unsuccessful

// print all the elements

list.DisplayList();

if(list.FindNode(5.0) > 0) cout << "5.0 found" << endl;

else cout << "5.0 not found" << endl;

if(list.FindNode(4.5) > 0) cout << "4.5 found" << endl;

else cout << "4.5 not found" << endl;

list.DeleteNode(7.0);

list.DisplayList();

return 0;

}

6

7

5

Number of nodes in the list: 3

5.0 found

4.5 not found

6

5

Number of nodes in the list: 2

result



Variations of Linked Lists

• Circular linked lists
– The last node points to the first node of the list

– How do we know when we have finished traversing 
the list? (Tip: check if the pointer of the current 
node is equal to the head.)

A

Head

B C



Variations of Linked Lists

• Doubly linked lists
– Each node points to not only successor but the 

predecessor
– There are two NULL: at the first and last nodes in 

the list
– Advantage: given a node, it is easy to visit its 

predecessor. Convenient to traverse lists backwards

A

Head

B C 



Array versus Linked Lists

• Linked lists are more complex to code and manage than 
arrays, but they have some distinct advantages.
– Dynamic: a linked list can easily grow and shrink in size.

• We don’t need to know how many nodes will be in the list. They are 
created in memory as needed.

• In contrast, the size of a C++ array is fixed at compilation time.

– Easy and fast insertions and deletions

• To insert or delete an element in an array, we need to copy to 
temporary variables to make room for new elements or close the gap 
caused by deleted elements.

• With a linked list, no need to move other nodes. Only need to reset 
some pointers.


