
Programming

What is programming?

• Series of instructions to a computer to
accomplish a task

• Instructions must be written in a way the
computer can understand

• Programming languages are used to write
programs

What is programming?

• Once the code (language) of a program has
been written, it must be executed (run,
started).

• You may need to type the name of the
program to start it, or use a word like RUN and
the name of the program (in the old days,
anyway).

How do you write a program?

• Decide what steps are needed to complete the task

• Write the steps in pseudocode (written in English) or
as a flowchart (graphic symbols)

• Translate into the programming language

• Try out the program and “debug” it (fix if necessary)

What is pseudocode?

• List of steps written in English

• Like the instructions for a recipe

• Must be in the right sequence

– Imagine saying “bake the cake” and then “mix it
up”

Sample Pseudocode

• Task: add two numbers

• Pseudocode:

– Start

– Get two numbers

– Add them

– Print the answer

– End

What does a flowchart look like?

• The pseudocode from the previous slide
would look like this as a flowchart:

Start

Get 2 numbers

Add them

Print answer

End

What are those funny symbols?

• START/END

• INPUT/OUTPUT

• PROCESS

• DECISION

What are those funny symbols?

• START/END

• Used at the beginning
and end of each
flowchart.

What are those funny symbols?

• INPUT/OUTPUT

• Shows when
information/data comes
into a program or is
printed out.

What are those funny symbols?

• PROCESS

• Used to show
calculations, storing of
data in variables, and
other “processes” that
take place within a
program.

What are those funny symbols?

• DECISION

• Used to show that the
program must decide
whether something
(usually a comparison
between numbers) is true
or false. YES and NO (or
T/F) branches are usually
shown.

Y

N

X>7?

Another Sample:
Calculating Age

• Pseudocode:

– Start

– Get year born

– Calculate age

– Print age

– If age > 50 print OLD

– End

Another Sample:
Calculating Age

• Flowchart
– Start

– Get year born

– Calculate age

– Print age

– If age > 50 print OLD

– End

Get yr

Calc age

Print age

Age>50?OLD Y

N

Start

End

Elements of a Program

• All programming languages have certain features in common. For
example:

– Variables

– Commands/Syntax (the way commands are structured)

– Loops

– Decisions

– Functions

• Each programming language has a different set of rules about
these features.

Variables

• Variables are part of almost every program.

• A variable is a “place to put data” and is usually
represented by a letter or a word. (Think of a
variable as a Tupperware container with a label
on it.)

• Variable names cannot contain spaces.

• Some programming languages have very specific
limits on variable names.

Variables

• Usually there are several ways to put information
into a variable.

• The most common way is to use the equal sign
(=).

• X = Y + 7 means take the value of Y, add 7, and
put it into X.

• COUNT=COUNT + 2 means take the current value
of COUNT, add 2 to it, and make it the new value
of COUNT.

Variables

• Sometimes you must specify the type of data
that will be placed in a variable.

• Here are some examples of data types:
– Numeric (numbers of all kinds)

– String (text, “strings of letters”)

– Integer (whole numbers)

– Long (large numbers)

– Boolean (true/false)

Variables

• Variables may be classified as global or local.

• A global variable is one that can be shared by all
parts of a program, including any functions or
sub-programs.

• A local variable is one that is used only within a
certain part of the program, for example, only in
one function or sub-program.

Commands/Syntax

• Programming languages are truly languages.

• They have rules about grammar, spelling,
punctuation, etc.

• You need to learn the rules of a programming
language, just as you learned to speak and
write English.

Loops

• A loop is a repetition of all or part of the
commands in a program.

• A loop often has a counter (a variable) and
continues to repeat a specified number of
times.

• A loop may also continue until a certain
condition is met (e.g., until the end of a file or
until a number reaches a set limit)

Decisions

• You saw a flowchart symbol for decisions.

• A program often needs to decide whether
something is true or false in order to see
which way to continue.

• Programs often use IF (or IF THEN or IF THEN
ELSE) statements to show a decision.

Decisions

• An IF statement always has a condition to
check, often a comparison between a variable
and a number.

• The IF statement also must specify what to do
if the condition/comparison is true.

• These instructions (for “true”) may come after
the word THEN, or they may simply be listed.

Decisions

• In an IF THEN statement, when the condition
is false, the program simply ignores the THEN
commands and continues to the next line.

• In an IF THEN ELSE statement, commands are
given for both the true and false conditions.

Functions

• In most programming languages, small sub-
programs are used to perform some of the tasks.

• These may be called functions, subroutines,
handlers, or other such terms.

• Functions often have names (e.g., getName or
CALCTAX).

Functions

• A function generally gets information from the
main program, performs some task, and returns
information back to the program.

• Functions follow the same rules of syntax, etc. as
the main program.

Hints for Writing Code

• “Code” means writing the program in the
appropriate language

• Be sure the code is exact (spelling,
capitals/lower case, punctuation, etc).

• Write part of the code, try it, then write more.

Debugging

• To “debug” means to try a program, then fix any
mistakes.

• Virtually no program works the first time you run it.
There are just too many places to make errors.

• When you are debugging a program, look for spelling
and punctuation errors.

• Fix one error at a time, then try the program again.

3. C++ Stream Input/Output

• C++,

cout << “Enter new tag: “;
cin >> tag;
cout << “The new tag is : “ << tag << ‘\n’;

29

3.1 An Example

// Simple stream input/output

#include <iostream.h>

main()

{

cout << "Enter your age: ";

int myAge;

cin >> myAge;

cout << "Enter your friend's age: ";

int friendsAge;

cin >> friendsAge;

30

if (myAge > friendsAge)

cout << "You are older.\n";

else

if (myAge < friendsAge)

cout << "You are younger.\n";

else

cout << "You and your friend are the same

age.\n";

return 0;

}

31

4. Declarations in C++

• In C++, declarations can be placed anywhere
(except in the condition of a while, do/while,
for or if structure.)

• An example
cout << “Enter two integers: “;

int x, y;

cin >> x >> y;

cout << “The sum of “ << x << “ and “ << y

<< “ is “ << x + y << ‘\n’;

32

Control Structures in C++

while, do/while, for

switch, break, continue

The while Repetition Structure

• Repetition structure

– Programmer specifies an action to be repeated while
some condition remains true

– Psuedocode
while there are more items on my shopping list

Purchase next item and cross it off my list

– while loop repeated until condition becomes false.

• Example
int product = 2;

while (product <= 1000)

product = 2 * product;

The while Repetition Structure

• Flowchart of while loop

condition statement

true

false int x = 2;

while (x >= 0){

if (x == 2){

cout << “Value of x is : “ << x << endl;

}

x = x – 1;

}

• Common errors:

– infinite loop

– unitialized variables

There are functions that return True or False :

cin.eof()

So..

char s;

while (!cin.eof()) {

cin >> s;

cout << s << endl;

}

Formulating Algorithms (Counter-Controlled
Repetition)

• Pseudocode for example:
Set total and grade counter to zero

While grade counter <= 10
Input the next grade
Add the grade into the total
grade counter++

average = total divided / 10

Print the class average

• Following is the C++ code for this example

1 // Fig. 2.7: fig02_07.cpp

2 // Class average program with counter-controlled repetition

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8

9 int main()

10 {

11 int total, // sum of grades

12 gradeCounter, // number of grades entered

13 grade, // one grade

14 average; // average of grades

15

16 // initialization phase

17 total = 0; // clear total

18 gradeCounter = 1; // prepare to loop

19

20 // processing phase

21 while (gradeCounter <= 10) { // loop 10 times

22 cout << "Enter grade: "; // prompt for input

23 cin >> grade; // input grade

24 total = total + grade; // add grade to total

25 gradeCounter = gradeCounter + 1; // increment counter

26 }

27

28 // termination phase

29 average = total / 10; // integer division

30 cout << "Class average is " << average << endl;

31

32 return 0; // indicate program ended successfully

33 }

The counter gets incremented each

time the loop executes. Eventually,

the counter causes the loop to end.

Program Output

Enter grade: 98

Enter grade: 76

Enter grade: 71

Enter grade: 87

Enter grade: 83

Enter grade: 90

Enter grade: 57

Enter grade: 79

Enter grade: 82

Enter grade: 94

Class average is 81

Assignment Operators

• Assignment expression abbreviations
c = c + 3; can be abbreviated as c += 3; using the

addition assignment operator

• Statements of the form
variable = variable operator expression;

can be rewritten as
variable operator= expression;

• Examples of other assignment operators include:
d -= 4 (d = d - 4)

e *= 5 (e = e * 5)

f /= 3 (f = f / 3)

g %= 9 (g = g % 9)

Increment and Decrement Operators

• Increment operator (c++) - can be used instead of

c += 1

• Decrement operator (c--) - can be used instead of

c -= 1

• Preincrement
• When the operator is used before the variable (++c or –c)

• Variable is changed, then the expression it is in is evaluated.

• Posincrement
• When the operator is used after the variable (c++ or c--)

• Expression the variable is in executes, then the variable is changed.

• If c = 5, then

– cout << ++c; prints out 6 (c is changed
before cout is executed)

– cout << c++; prints out 5 (cout is executed
before the increment. c now has the value of 6)

• When Variable is not in an expression
– Preincrementing and postincrementing have the

same effect.
++c;

cout << c;

and
c++;

cout << c;

have the same effect.

Essentials of Counter-Controlled Repetition

• Counter-controlled repetition requires:
– The name of a control variable (or loop counter).
– The initial value of the control variable.
– The condition that tests for the final value of the control

variable (i.e., whether looping should continue).
– The increment (or decrement) by which the control variable

is modified each time through the loop.
• Example:

int counter =1; //initialization

while (counter <= 10){ //repetitio

// condition

cout << counter << endl;

++counter; //increment

}

The for Repetition Structure

• The general format when using for loops is
for (initialization; LoopContinuationTest;

increment)

statement

• Example:
for(int counter = 1; counter <= 10;

counter++)

cout << counter << endl;

– Prints the integers from one to ten

• For loops can usually be rewritten as while
loops:

initialization;

while (loopContinuationTest){

statement

increment;

}

• Initialization and increment as comma-
separated lists

for (int i = 0, j = 0; j + i <= 10;

j++, i++)

cout << j + i << endl;

Flowchart for for

Condition

Test the variable
statement

true

false

Increment variable

Initialize variable

1 // Fig. 2.20: fig02_20.cpp

2 // Summation with for

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 int main()

9 {

10 int sum = 0;

11

12 for (int number = 2; number <= 100; number += 2)

13 sum += number;

14

15 cout << "Sum is " << sum << endl;

16

17 return 0;

18 }

Sum is 2550

• Program to sum the even numbers from 2 to

100

The switch Multiple-Selection Structure

• switch

– Useful when variable or expression is tested for
multiple values

– Consists of a series of case labels and an optional
default case

– break is (almost always) necessary

switch (expression) {
case val1:

statement
break;

case val2:
statement
break;

….

case valn:
statement
break;

default:
statement
break;

}

if (expression == val1)

statement

else if (expression==val2)

statement

….

else if (expression== valn)

statement

else

statement

flowchart

true

false

.

.

.

case a case a action(s) break

case b case b action(s) break

false

false

case z case z action(s) break

true

true

default action(s)

1 // Fig. 2.22: fig02_22.cpp

2 // Counting letter grades

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8

9 int main()

10 {

11 int grade, // one grade

12 aCount = 0, // number of A's

13 bCount = 0, // number of B's

14 cCount = 0, // number of C's

15 dCount = 0, // number of D's

16 fCount = 0; // number of F's

17

18 cout << "Enter the letter grades." << endl

19 << "Enter the EOF character to end input." << endl;

20

21 while ((grade = cin.get()) != EOF) {

22

23 switch (grade) { // switch nested in while

24

25 case 'A': // grade was uppercase A

26 case 'a': // or lowercase a

27 ++aCount;

28 break; // necessary to exit switch

29

30 case 'B': // grade was uppercase B

31 case 'b': // or lowercase b

32 ++bCount;

33 break;

34

Notice how the case statement is

used

35 case 'C': // grade was uppercase C

36 case 'c': // or lowercase c

37 ++cCount;

38 break;

39

40 case 'D': // grade was uppercase D

41 case 'd': // or lowercase d

42 ++dCount;

43 break;

44

45 case 'F': // grade was uppercase F

46 case 'f': // or lowercase f

47 ++fCount;

48 break;

49

50 case '\n': // ignore newlines,

51 case '\t': // tabs,

52 case ' ': // and spaces in input

53 break;

54

55 default: // catch all other characters

56 cout << "Incorrect letter grade entered."

57 << " Enter a new grade." << endl;

58 break; // optional

59 }

60 }

61

62 cout << "\n\nTotals for each letter grade are:"

63 << "\nA: " << aCount

64 << "\nB: " << bCount

65 << "\nC: " << cCount

66 << "\nD: " << dCount

67 << "\nF: " << fCount << endl;

68

69 return 0;

70 }

break causes switch to end

and the program continues with the
first statement after the switch

structure.

Notice the default statement.

Program Output

Enter the letter grades.

Enter the EOF character to end input.

a

B

c

C

A

d

f

C

E

Incorrect letter grade entered. Enter a new grade.

D

A

b

Totals for each letter grade are:

A: 3

B: 2

C: 3

D: 2

F: 1

The do/while Repetition Structure
• The do/while repetition structure is similar to

the while structure,
– Condition for repetition tested after the body of the loop

is executed

• Format:
do {

statement

} while (condition);

• Example (letting counter = 1):
do {

cout << counter << " ";

} while (++counter <= 10);

– This prints the integers from 1 to 10

• All actions are performed at least once.

true

false

statement

condition

The break and continue Statements

• Break

– Causes immediate exit from a while, for,
do/while or switch structure

– Program execution continues with the first
statement after the structure

– Common uses of the break statement:

• Escape early from a loop

• Skip the remainder of a switch structure

• Continue

– Skips the remaining statements in the body of a
while, for or do/while structure and proceeds
with the next iteration of the loop

– In while and do/while, the loop-continuation test
is evaluated immediately after the continue
statement is executed

– In the for structure, the increment expression is
executed, then the loop-continuation test is evaluated

The continue Statement

• Causes an immediate jump to the loop test
int next = 0;

while (true){

cin >> next;

if (next < 0)

break;

if (next % 2) //odd number, don’t print

continue;

cout << next << endl;

}

cout << “negative num so here we are!” << endl;

Sentinel-Controlled Repetition

• Suppose the previous problem becomes:
Develop a class-averaging program that will process an
arbitrary number of grades each time the program is
run.

– Unknown number of students - how will the program
know to end?

• Sentinel value
– Indicates “end of data entry”

– Loop ends when sentinel inputted

– Sentinel value chosen so it cannot be confused with a
regular input (such as -1 in this case)

• Top-down, stepwise refinement
– begin with a pseudocode representation of the

top:
Determine the class average for the quiz

– Divide top into smaller tasks and list them in
order:

Initialize variables

Input, sum and count the quiz grades

Calculate and print the class average

Input, sum and count the quiz grades
to

Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel

Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

• Refine
Calculate and print the class average

to

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

Else
Print “No grades were entered”

1 // Fig. 2.9: fig02_09.cpp

2 // Class average program with sentinel-controlled repetition.

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8 using std::ios;

9

10 #include <iomanip>

11

12 using std::setprecision;

13 using std::setiosflags;

14

15 int main()

16 {

17 int total, // sum of grades

18 gradeCounter, // number of grades entered

19 grade; // one grade

20 double average; // number with decimal point for average

21

22 // initialization phase

23 total = 0;

24 gradeCounter = 0;

25

26 // processing phase

27 cout << "Enter grade, -1 to end: ";

28 cin >> grade;

29

30 while (grade != -1) {

Data type double used to

represent decimal numbers.

Nested control structures

• Problem:
A college has a list of test results (1 = pass, 2 = fail) for
10 students. Write a program that analyzes the results.
If more than 8 students pass, print "Raise Tuition".

• We can see that
– The program must process 10 test results. A counter-

controlled loop will be used.
– Two counters can be used—one to count the number

of students who passed the exam and one to count the
number of students who failed the exam.

– Each test result is a number—either a 1 or a 2. If the
number is not a 1, we assume that it is a 2.

Nested control structures

• High level description of the algorithm

Initialize variables

Input the ten quiz grades and count passes and failur

Print a summary of the exam results and decide if

tuition should be raised

1 // Fig. 2.11: fig02_11.cpp

2 // Analysis of examination results

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8

9 int main()

10 {

11 // initialize variables in declarations

12 int passes = 0, // number of passes

13 failures = 0, // number of failures

14 studentCounter = 1, // student counter

15 result; // one exam result

16

17 // process 10 students; counter-controlled loop

18 while (studentCounter <= 10) {

19 cout << "Enter result (1=pass,2=fail): ";

20 cin >> result;

21

22 if (result == 1) // if/else nested in while

23 passes = passes + 1;

3. Print results

Program Output

24 else

25 failures = failures + 1;

26

27 studentCounter = studentCounter + 1;

28 }

29

30 // termination phase

31 cout << "Passed " << passes << endl;

32 cout << "Failed " << failures << endl;

33

34 if (passes > 8)

35 cout << "Raise tuition " << endl;

36

37 return 0; // successful termination

38 }

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 2

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Passed 9

Failed 1

Raise tuition

