
Distributed Systems

Outline

• Definition of a Distributed System

• Goals of a Distributed System

• Types of Distributed Systems

What Is A Distributed System?

• A collection of independent computers that
appears to its users as a single coherent system.

• Features:

– No shared memory – message-based communication

– Each runs its own local OS

– Heterogeneity

• Ideal: to present a single-system image:

– The distributed system “looks like” a single
computer rather than a collection of separate
computers.

Distributed System

Characteristics

• To present a single-system image:

– Hide internal organization, communication details

– Provide uniform interface

• Easily expandable

– Adding new computers is hiddenfrom users

• Continuous availability

– Failures in one component can be covered by other

components

• Supported by middleware

Definition of a Distributed System

Figure 1-1. A distributed system organized as middleware. The

middleware layer runs on all machines, and offers a uniform

interface to the system

Role of Middleware (MW)

• In some early research systems: MW tried

to provide the illusion that a collection of

separate machines was a single computer.

– E.g. NOW project: GLUNIX middleware

• Today:

– clustering software allows independent

computers to work together closely

– MW also supports seamless access to remote

services, doesn’t try to look like a general-

purpose OS

Middleware Examples

• CORBA (Common Object Request Broker

Architecture)

• DCOM (Distributed Component Object

Management) – being replaced by .net

• Sun’s ONC RPC (Remote Procedure Call)

• RMI (Remote Method Invocation)

• SOAP (Simple Object Access Protocol)

Middleware Examples

• All of the previous examples support
communication across a network:

• They provide protocols that allow a
program running on one kind of computer,
using one kind of operating system, to call a
program running on another computer with
a different operating system

– The communicating programs must be running
the same middleware.

Distributed System Goals

• Resource Accessibility

• Distribution Transparency

• Openness

• Scalability

Goal 1 – Resource Availability

• Support user access to remote resources (printers,

data files, web pages, CPU cycles) and the fair

sharing of the resources

• Economics of sharing expensive resources

• Performance enhancement – due to multiple

processors; also due to ease of collaboration and

info exchange – access to remote services

– Groupware: tools to support collaboration

• Resource sharing introduces security problems.

Goal 2 – Distribution Transparency

• Software hides some of the details of the

distribution of system resources.

– Makes the system more user friendly.

• A distributed system that appears to its users &

applications to be a single computer system is said

to be transparent.

– Users & apps should be able to access remote

resources in the same way they access local

resources.

• Transparency has several dimensions.

Types of Transparency
Transparency Description

Access Hide differences in data representation &
resource access (enables interoperability)

Location Hide location of resource (can use resource
without knowing its location)

Migration Hide possibility that a system may change
location of resource (no effect on access)

Replication Hide the possibility that multiple copies of the
resource exist (for reliability and/or availability)

Concurrency Hide the possibility that the resource may be
shared concurrently

Failure Hide failure and recovery of the resource. How
does one differentiate betw. slow and failed?

Relocation Hide that resource may be moved during use

Figure 1-2. Different forms of transparency in a distributed system

(ISO, 1995)

Goal 2: Degrees of Transparency

• Trade-off: transparency versus other factors

– Reduced performance: multiple attempts to
contact a remote server can slow down the
system – should you report failure and let user
cancel request?

– Convenience: direct the print request to my
local printer, not one on the next floor

• Too much emphasis on transparency may prevent
the user from understanding system behavior.

Goal 3 - Openness

• An open distributed system “…offers services according to
standard rules that describe the syntax and semantics of those
services.” In other words, the interfaces to the system are

clearly specified and freely available.
– Compare to network protocols

– Not proprietary

• Interface Definition/Description Languages (IDL): used to
describe the interfaces between software components, usually
in a distributed system
– Definitions are language & machine independent

– Support communication between systems using different
OS/programming languages; e.g. a C++ program running on Windows
communicates with a Java program running on UNIX

– Communication is usually RPC-based.

bilal
Highlight

• Interoperability: the ability of two different
systems or applications to work together

– A process that needs a service should be able to
talk to any process that provides the service.

– Multiple implementations of the same service
may be provided, as long as the interface is
maintained

• Portability: an application designed to run
on one distributed system can run on another
system which implements the same interface.

• Extensibility: Easy to add new components,
features

Open Systems Support …

bilal
Highlight

Goal 4 - Scalability

• Dimensions that may scale:

– With respect to size

– With respect to geographical distribution

– With respect to the number of administrative

organizations spanned

• A scalable system still performs well as it

scales up along any of the three dimensions.

Size Scalability

• Scalability is negatively affected when the system is

based on

– Centralized server: one for all users

– Centralized data: a single data base for all users

– Centralized algorithms: one site collects all information,

processes it, distributes the results to all sites.

• Complete knowledge: good

• Time and network traffic: bad

Decentralized Algorithms

• No machine has complete information about
the system state

• Machines make decisions based only on
local information

• Failure of a single machine doesn’t ruin the
algorithm

• There is no assumption that a global clock
exists.

Geographic Scalability

• Early distributed systems ran on LANs, relied on
synchronous communication.

– May be too slow for wide-area networks

– Wide-area communication is unreliable, point-to-point;

– Unpredictable time delays may even affect correctness

• LAN communication is based on broadcast.

– Consider how this affects an attempt to locate a
particular kind of service

• Centralized components + wide-area
communication: waste of network bandwidth

Scalability - Administrative

• Different domains may have different

policies about resource usage, management,

security, etc.

• Trust often stops at administrative

boundaries

– Requires protection from malicious attacks

Scaling Techniques

• Scalability affects performance more than

anything else.

• Three techniques to improve scalability:

– Hiding communication latencies

– Distribution

– Replication

Hiding Communication Delays

• Structure applications to use asynchronous
communication (no blocking for replies)

– While waiting for one answer, do something else; e.g.,
create one thread to wait for the reply and let other
threads continue to process or schedule another task

• Download part of the computation to the
requesting platform to speed up processing

– Filling in forms to access a DB: send a separate
message for each field, or download form/code and
submit finished version.

– i.e., shorten the wait times

Scaling Techniques

Figure 1-4. The difference between letting (a) a server

or (b) a client check forms as they are being filled.

Distribution

• Instead of one centralized service, divide

into parts and distribute geographically

• Each part handles one aspect of the job

– Example: DNS namespace is organized as a

tree of domains; each domain is divided into

zones; names in each zone are handled by a

different name server

– WWW consists of many (millions?) of servers

Third Scaling Technique -

Replication

• Replication: multiple identical copies of

something

– Replicated objects may also be distributed, but

aren’t necessarily.

• Replication

– Increases availability

– Improves performance through load balancing

– May avoid latency by improving proximity of

resource

Caching

• Caching is a form of replication

– Normally creates a (temporary) replica of

something closer to the user

• Replication is often more permanent

• User (client system) decides to cache, server

system decides to replicate

• Both lead to consistency problems

Summary

Goals for Distribution

• Resource accessibility

– For sharing and enhanced performance

• Distribution transparency

– For easier use

• Openness

– To support interoperability, portability, extensibility

• Scalability

– With respect to size (number of users), geographic

distribution, administrative domains

Issues/Pitfalls of Distribution

• Requirement for advanced software to realize the
potential benefits.

• Security and privacy concerns regarding network
communication

• Replication of data and services provides fault
tolerance and availability, but at a cost.

• Network reliability, security, heterogeneity,
topology

• Latency and bandwidth

• Administrative domains

Distributed Systems

• Early distributed systems emphasized the

single system image – often tried to make a

networked set of computers look like an

ordinary general purpose computer

• Examples: Amoeba, Sprite, NOW, Condor

(distributed batch system), …

Types of Distributed Systems

• Distributed Computing Systems

– Clusters

– Grids

– Clouds

• Distributed Information Systems

– Transaction Processing Systems

– Enterprise Application Integration

• Distributed Embedded Systems

– Home systems

– Health care systems

– Sensor networks

bilal
Text Box
1- Examples include systems that manage sales order entry, airline reservations, payroll, employee records, manufacturing, and shipping

2- [EAI] Developers typically implement data-level integration with database gateways or triggers and stored procedures. The major downside: keeping the integrated application's data intact. For example, some ERP (enterprise resource planning) systems include thousands of tables

bilal
Text Box
1

2

Cluster Computing

• A collection of similar processors (PCs,

workstations) running the same operating

system, connected by a high-speed LAN.

• Parallel computing capabilities using

inexpensive PC hardware

• Replace big parallel computers (MPPs)

bilal
Text Box
Examples include the IBM General Parallel File System, Microsoft's Cluster Shared Volumes or the Oracle Cluster File System.

Cluster Types & Uses

• High Performance Clusters (HPC)

– run large parallel programs

– Scientific, military, engineering apps; e.g., weather

modeling

• Load Balancing Clusters

– Front end processor distributes incoming requests

– server farms (e.g., at banks or popular web site)

• High Availability Clusters (HA)

– Provide redundancy – back up systems

– May be more fault tolerant than large mainframes

bilal
Text Box
Examples include the IBM General Parallel File System, Microsoft's Cluster Shared Volumes or the Oracle Cluster File System.
Local Example : IMAN Project

Clusters – Beowulf model

• Linux-based

• Master-slave paradigm

– One processor is the master; allocates tasks to

other processors, maintains batch queue of

submitted jobs, handles interface to users

– Master has libraries to handle message-based

communication or other features (the

middleware).

http://www.beowulf.org/

Cluster Computing Systems

• Figure 1-6. An example of a cluster

computing system.

Figure 1-6. An example of a (Beowolf) cluster

computing system

Clusters – MOSIX model

• Provides a symmetric, rather than

hierarchical paradigm

– High degree of distribution transparency (single

system image)

– Processes can migrate between nodes

dynamically and preemptively (more about this

later.) Migration is automatic

• Used to manage Linux clusters

http://www.mosix.org/txt_about.html

Grid Computing Systems

• Modeled loosely on the electrical grid.

• Highly heterogeneous with respect to
hardware, software, networks, security
policies, etc.

• Grids support virtual organizations: a
collaboration of users who pool resources
(servers, storage, databases) and share them

• Grid software is concerned with managing
sharing across administrative domains.

Grids

• Similar to clusters but processors are more loosely

coupled, tend to be heterogeneous, and are not all

in a central location.

• Can handle workloads similar to those on

supercomputers, but grid computers connect over

a network (Internet?) and supercomputers’ CPUs

connect to a high-speed internal bus/network

• Problems are broken up into parts and distributed

across multiple computers in the grid – less

communication betw parts than in clusters.

bilal
Highlight

bilal
Highlight

bilal
Highlight

bilal
Highlight

A Proposed Architecture for Grid Systems*

• Fabric layer: interfaces to local
resources at a specific site

• Connectivity layer: protocols to
support usage of multiple resources
for a single application; e.g., access
a remote resource or transfer data
between resources; and protocols to
provide security

• Resource layer manages a single
resource, using functions supplied
by the connectivity layer

• Collective layer: resource
discovery, allocation, scheduling,
etc.

• Applications: use the grid
resources

• The collective, connectivity and
resource layers together form the
middleware layer for a grid

Figure 1-7. A layered architecture

for grid computing systems

bilal
Highlight

Cloud Computing

• Provides scalable services as a utility over
the Internet.

• Often built on a computer grid

• Users buy services from the cloud

– Grid users may develop and run their own
software

• Cluster/grid/cloud distinctions blur at the
edges!

bilal
Highlight

bilal
Highlight

Types of Distributed Systems

• Distributed Computing Systems

– Clusters

– Grids

– Clouds

• Distributed Information Systems

• Distributed Embedded Systems

Distributed Information Systems

• Business-oriented

• Systems to make a number of separate
network applications interoperable and
build “enterprise-wide information
systems”.

• Two types discussed here:

– Transaction processing systems

– Enterprise application integration (EAI)

Transaction Processing Systems

• Provide a highly structured client-server

approach for database applications

• Transactions are the communication model

• Obey the ACID properties:

– Atomic: all or nothing

– Consistent: invariants are preserved

– Isolated (serializable)

– Durable: committed operations can’t be undone

Transaction Processing Systems

• Figure 1-8. Example primitives for

transactions.

Figure 1-8. Example primitives for transactions

Transactions

• Transaction processing may be centralized

(traditional client/server system) or

distributed.

• A distributed database is one in which the

data storage is distributed – connected to

separate processors.

Nested Transactions

• A nested transaction is a transaction within

another transaction (a sub-transaction)

– Example: a transaction may ask for two things

(e.g., airline reservation info + hotel info)

which would spawn two nested transactions

• Primary transaction waits for the results.

– While children are active parent may only

abort, commit, or spawn other children

Transaction Processing Systems

Figure 1-9. A nested transaction.

Implementing Transactions

• Conceptually, private copy of all data

• Actually, usually based on logs

• Multiple sub-transactions – commit, abort

– Durability is a characteristic of top-level
transactions only

• Nested transactions are suitable for
distributed systems

– Transaction processing monitor may interface
between client and multiple data bases.

Enterprise Application Integration

• Less structured than transaction-based systems

• EA components communicate directly

– Enterprise applications are things like HR data,

inventory programs, …

– May use different OSs, different DBs but need to

interoperate sometimes.

• Communication mechanisms to support this

include CORBA, Remote Procedure Call (RPC)

and Remote Method Invocation (RMI)

Enterprise Application

Integration

Figure 1-11. Middleware as a communication facilitator in enterprise

application integration.

