Context-Free Grammars

- Precise syntactic specifications of a programming language
- For some classes, we can construct automatically an efficient parser
- Allows a language to evolve

Three general types of parsers

Universal parsing methods:

- can parse any grammar
- too inefficient to use in production compilers

Three general types of parsers

Top-down methods:

- Parse-trees built from root to leaves.
- Input to parser scanned from left to right one symbol at a time

Three general types of parsers

Bottom-up methods:

- Start from leaves and work their way up to the root.
- Input to parser scanned from left to right one symbol at a time

Dealing With Errors

If compiler had to process only correct programs, its design and implementation would be simplified greatly!

- Few languages have been designed with error handling in mind.
- Error handling is left to compiler designer.
- Bugs caused about 50% of the total cost, same as they used to be 50 years ago!

Common Programming Errors

- Lexical errors: misspellings of identifiers, keywords, or operators
- Syntactic errors: misplaced semicolons, extra or missing braces, case without switch,
- Semantic errors: type mismatches between operators and operands
- Logical errors: anything else!

Wish List

- Report the presence of errors clearly and accurately
- Recover from each error quickly enough to detect subsequent errors
- Add minimal overhead to the processing of correct programs

Easier said than done!

Error-Recovery Strategies

- Simplest: quit with an informative error message when detecting the first error
- Panic-mode Recovery: discards input symbols one at a time until a designated synchronizing tokens is found.
- Phrase-level Recovery: perform local correction on the remaining input. The choice of local correction is left to the compiler designer.
- Error Production: production rules for common errors.

Context-Free Grammar

Example:

expression	\rightarrow	expression + term
expression	\rightarrow	expression - term
expression	\rightarrow	term
term	\rightarrow	term * factor
term	\rightarrow	term / factor
term	\rightarrow	factor
factor	\rightarrow	(expression)
factor	\rightarrow	id

Nonterminals

Derivations

- Starting with start symbol
- At each step: a nonterminal replaced with the body of a production

Example:

 $E \rightarrow E + E \mid E * E \mid - E \mid (E) \mid id$

Deriving: -(id + id)

 $E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathbf{id}+E) \Rightarrow -(\mathbf{id}+\mathbf{id})$

More on Derivations

- ⇒ means derive in one step
- \Rightarrow means derive in zero or more steps
- \Rightarrow means derive in one or more steps

Leftmost derivations, the leftmost nonterminal in each sentential is always chosen. $\alpha \Rightarrow \beta_{lm} \beta$

Rightmost derivations, the rightmost nonterminal in each sentential is always chosen. $\alpha \Rightarrow \beta_{rm} \beta$

Example

For the context-free grammar:

$$S \rightarrow SS + |SS * |a$$

and the string aa + a*.

- a) Give a leftmost derivation for the string.
- b) Give a rightmost derivation for the string.
- c) Give a parse tree for the string.

Parse Trees

- What is the relationship between a parse-tree and derivations?
 - Parse tree is the graphical representation of derivations
 - Filters out order of nonterminal replacement
 - many-to-one relationship between derivations and parse-tree

Context-Free Grammar Vs Regular Expressions

- Grammars are more powerful notations than regular expressions
 - Every construct that can be described by a regular expression can be described by a grammar, but not vice-versa

Regular expression -> NFA then:

- 1. For each state i of the NFA, create a nonterminal A_i .
- 2. If state *i* has a transition to state *j* on input *a*, add the production $A_i \rightarrow aA_j$. If state *i* goes to state *j* on input ϵ , add the production $A_i \rightarrow A_j$.
- 3. If i is an accepting state, add $A_i \to \epsilon$.
- 4. If i is the start state, make A_i be the start symbol of the grammar.

(a|b)*abb а start b b а ►(2) ►(1) 3 0 b $A_0 \rightarrow aA_0 \mid bA_0 \mid aA_1$ $A_1 \rightarrow bA_2$ $A_2 \rightarrow bA_3$ A_3 $\rightarrow \epsilon$

Question Worth Asking

- If grammars are much powerful than regular expressions, why not using them in lexical analysis too?
- Lexical rules are quite simple and do not need notation as powerful as grammars
- Regular expressions are more concise and easier to understand for tokens
- More efficient lexical analyzers can be generated from regular expressions than from grammars

How Can We Enhance Our Grammar?

- Eliminating ambiguity
- Eliminating left-recursion
- Left factoring

Eliminating Ambiguity

Sometimes we can re-write grammar to eliminate ambiguity

 $\begin{array}{rccc} stmt & \rightarrow & \textbf{if } expr \textbf{ then } stmt \\ & | & \textbf{if } expr \textbf{ then } stmt \textbf{ else } stmt \\ & | & \textbf{ other } \end{array}$

if E_1 then if E_2 then S_1 else S_2

if E_1 then if E_2 then S_1 else S_2

 $\begin{array}{rrr} stmt & \rightarrow & \textbf{if } expr \textbf{ then } stmt \\ & | & \textbf{if } expr \textbf{ then } stmt \textbf{ else } stmt \\ & | & \textbf{ other } \end{array}$

stmt	\rightarrow	$matched_stmt$
		$open_stmt$
$matched_stmt$	\rightarrow	if expr then matched_stmt else matched_stmt
		other
$open_stmt$	\rightarrow	if expr then stmt
		$\mathbf{if} \ expr \ \mathbf{then} \ matched_stmt \ \mathbf{else} \ open_stmt$

Eliminating Left-Recursion

$$A \rightarrow A\alpha \mid \beta \qquad \longrightarrow \qquad \begin{array}{c} A \rightarrow \beta A' \\ A' \rightarrow \alpha A' \mid \epsilon \end{array}$$

 $A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$
 $A \rightarrow \beta_1 A' \mid \beta_2 A' \mid \cdots \mid \beta_n A' \\ A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \cdots \mid \alpha_m A' \mid \epsilon$
How about something like: $\begin{array}{c} S \rightarrow A a \mid b \\ A \rightarrow A c \mid S d \mid \epsilon \end{array}$
 $A \rightarrow A c \mid A a d \mid b d \mid \epsilon \qquad \qquad \begin{array}{c} S \rightarrow A a \mid b \\ A \rightarrow b d A' \mid A' \\ A' \rightarrow c A' \mid a d A' \mid \epsilon \end{array}$

Left-Factoring

 A way of delaying the decision until more info is available

Example:

 $\begin{array}{rcc} stmt & \rightarrow & \text{if } expr \text{ then } stmt \text{ else } stmt \\ & | & \text{if } expr \text{ then } stmt \end{array}$

stmt -> EXP **else** stmt | EXP EXP -> **if** expr **then** stmt

Top-Down Parsing

- Constructing a parse tree for an input string starting from root
 - Parse tree built in preorder (depth-first)
- Finding left-most derivation
- At each step of a top-down parse:
 - determine the production to be applied
 - matching terminal symbols in production body with input string

Recursive - Descent Parsing

recursive descent parser is a kind of top-down parser built from a set of mutually recursive procedures (or a non-recursive equivalent) where each such procedure usually implements one of the productions of the grammar.

Recursive-Descent Parsing

Example of Backtracking

Important Concepts: FIRST and FOLLOW

Define $FIRST(\alpha)$, where α is any string of grammar symbols, to be the set of terminals that begin strings derived from α . If $\alpha \stackrel{*}{\Rightarrow} \epsilon$, then ϵ is also in $FIRST(\alpha)$.

Define FOLLOW(A), for nonterminal A, to be the set of terminals a that can appear immediately to the right of A in some sentential form; that is, the set of terminals a such that there exists a derivation of the form $S \stackrel{*}{\Rightarrow} \alpha Aa\beta$,

Example

LL(1) Grammars

- For recursive-descent parsers with no backtracking
- L = scan from left to right
- L = left-most derivation
- 1 symbol lookahead
- Cannot be left-recursive or ambiguous
- If A-> F | T
 - FIRST(F) and FIRST(T) are disjoint
 - if ε is in FIRST(T) then FIRST(F) and FOLLOW(A) are disjoint ... and likewise when ε is in FIRST(F)

Parsing Table

- Two dimensional array

 Rows: nonterminals Columns: input symbols
- M[A,a] where A is nonterminal and a is terminal or \$
- Gives the production rule to use.
 - 1. For each terminal a in FIRST(A), add $A \to \alpha$ to M[A, a].
 - If ε is in FIRST(α), then for each terminal b in FOLLOW(A), add A → α to M[A, b]. If ε is in FIRST(α) and \$ is in FOLLOW(A), add A → α to M[A,\$] as well.

First Follow

T E'E)\$ (id \rightarrow E'+T E')\$ ---> ε 3 + TF T'+)\$ (id T'* F T'+)\$ * 8 \rightarrow ϵ * +) \$ F(id E \mathbf{id}

- 1. For each terminal a in FIRST(A), add $A \to \alpha$ to M[A, a].
- If ε is in FIRST(α), then for each terminal b in FOLLOW(A), add A → α to M[A,b]. If ε is in FIRST(α) and \$ is in FOLLOW(A), add A → α to M[A,\$] as well.

NON -		INPUT SYMBOL						
TERMINAL	id	+	*	()	\$		
E	$E \to T E'$			$E \to T E'$				
E'		$E' \to + T E'$			$E' \to \epsilon$	$E' \to \epsilon$		
T	$T \to FT'$			$T \to FT'$,		
T'		$T' \rightarrow \epsilon$	$T' \to *FT'$		$T' \to \epsilon$	$T' \rightarrow \epsilon$		
F	$F ightarrow { m id}$			$F \rightarrow (E)$				

NON -	NON - INPUT SYMBOL					
TERMINAL	id	+	*	()	\$
E	$E \rightarrow T E'$			$E \to T E'$		
E'		$E' \to + T E'$			$E' \to \epsilon$	$E' \to \epsilon$
T	$T \to FT'$			$T \rightarrow FT'$		}
T'		$T' \to \epsilon$	$T' \to *FT'$		$T' \to \epsilon$	$T' \rightarrow \epsilon$
F	$F \to \mathbf{id}$			$F \rightarrow (E)$		

id+id*id

Exercise

For the following productions:

S-> +SS | * SS | a

- Write predictive parser
- Write parsing table
- Show how to parse: +*aaa

Bottom-Up Parsing

- Given a string of terminals
- Build parse tree starting from leaves and working up toward the root
- reverse of right-most derivation
- Used for type of grammars called LR
- LR parsers are difficult to build by hand
- We use automatic parser generators for LR grammars

 $E \Rightarrow T \Rightarrow T * F \Rightarrow T * \mathbf{id} \Rightarrow F * \mathbf{id} \Rightarrow \mathbf{id} * \mathbf{id}$

RIGHT SENTENTIAL FORM	HANDLE	REDUCING PRODUCTION
$\mathbf{id}_1 * \mathbf{id}_2$	\mathbf{id}_1	$F ightarrow \mathbf{id}$
$F*\mathbf{id}_2$	F	$T \to F$
$T * \mathbf{id}_2$	\mathbf{id}_2	$F \rightarrow \mathbf{id}$
<i>T</i> * <i>F</i>	T * F	$E \rightarrow T * F$

Shift-Reduce Parsing

- Form of bottom-up parsing
- Consists of:
 - Stack: holds grammar symbols
 - input buffer: holds the rest of the string to be parsed
- Handle always appears on the top of the stack

Initial position:	sition: F		(success)
Stack	$\frac{\text{INPUT}}{w \$}$	Stack	INPUT
\$		\$ <i>S</i>	\$

Actions: shift, reduce, accept, error

id * id

STACK	Input	ACTION
\$	$\mathbf{id}_1 * \mathbf{id}_2 $	$_{\rm shift}$
\mathbf{sid}_1	$* \operatorname{id}_2 \$$	reduce by $F \to \mathbf{id}$
F	$* \operatorname{id}_2 \$$	reduce by $T \to F$
T	$* \mathbf{id}_2 \$$	shift
T *	\mathbf{id}_2 \$	shift
$T * id_2$	\$	reduce by $F \to \mathbf{id}$
T * F	\$	reduce by $T \to T * F$
T	\$	reduce by $E \to T$
E	\$	accept

Exercise

Let's apply shift-reduce to the following input: 00511 and the following productions: S-> 051 | 01

So...

- Skim: 4.2.6, 4.3.5, 4.4.4, 4.4.5
- Read rest of 4.1 to 4.5