
Context-Free Grammars 

• Precise syntactic specifications of a 
programming language 

• For some classes, we can construct 
automatically an efficient parser 

• Allows a language to evolve 



The Parser 



The Parser 

Three general types of parsers 
 
Universal parsing methods: 
• can parse any grammar 
• too inefficient to use in production compilers 



The Parser 

Three general types of parsers 
 
Top-down methods:  
• Parse-trees built from root to leaves. 
• Input to parser scanned from left to right one symbol at a time 



The Parser 

Three general types of parsers 
 
Bottom-up methods: 
• Start from leaves and work their way up to the root. 
• Input to parser scanned from left to right one symbol at a time 



Dealing With Errors 
If compiler had to process only correct programs, its  
design and implementation would be simplified greatly! 
 

• Few languages have been designed with 
error handling in mind. 

• Error handling is left to compiler designer. 
• Bugs caused about 50% of the total cost, 

same as they used to be 50 years ago! 
 



Common Programming Errors 

• Lexical errors: misspellings of 
identifiers, keywords, or operators 

• Syntactic errors: misplaced semicolons, 
extra or missing braces, case without 
switch, … . 

• Semantic errors: type mismatches 
between operators and operands 

• Logical errors: anything else! 



Wish List 

• Report the presence of errors clearly 
and accurately 

• Recover from each error quickly enough 
to detect subsequent errors 

• Add minimal overhead to the processing 
of correct programs 

Easier said than done! 



Error-Recovery Strategies 
• Simplest: quit with an informative error 

message when detecting the first error 
• Panic-mode Recovery: discards input 

symbols one at a time until a designated 
synchronizing tokens is found. 

• Phrase-level Recovery: perform local 
correction on the remaining input. The 
choice of local correction is left to the 
compiler designer. 

• Error Production: production rules for 
common errors. 



Context-Free Grammar 

Terminals  
(token name) 

Start 
Symbol 

Productions 

Nonterminals 

Example: 



Derivations 

• Starting with start symbol 
• At each step: a nonterminal  replaced 

with the body of a production 

Example: 

Deriving:  -(id + id) 



More on Derivations 
means derive in one step 

means derive in zero or more steps 

means derive in one or more steps 

Leftmost derivations, the leftmost nonterminal in each sentential is always 
chosen. 

Rightmost derivations, the rightmost nonterminal in each sentential is 
always chosen. 



Example 
For the context-free grammar: 



Bilal Alqudah
   S =lm=> SS* => SS+S* => aS+S* => aa+S* => aa+a*

S =rm=> SS* => Sa* => SS+a* => Sa+a* => aa+a*�

Bilal Alqudah
S 

Bilal Alqudah
S 

Bilal Alqudah
S 

Bilal Alqudah
S 

Bilal Alqudah
S 

Bilal Alqudah
a 

Bilal Alqudah
a 

Bilal Alqudah
a 

Bilal Alqudah
+ 

Bilal Alqudah
* 

Bilal Alqudah


Bilal Alqudah


Bilal Alqudah


Bilal Alqudah


Bilal Alqudah


Bilal Alqudah


Bilal Alqudah


Bilal Alqudah


Bilal Alqudah




Parse Trees 

• What is the relationship between a 
parse-tree and derivations? 
– Parse tree is the graphical representation 

of derivations 
– Filters out order of nonterminal 

replacement  
– many-to-one relationship between 

derivations and parse-tree 





Context-Free Grammar Vs 
Regular Expressions 

• Grammars are more powerful notations than 
regular expressions 
– Every construct that can be described by a regular 

expression can be described by a grammar, but not 
vice-versa 

Regular expression -> NFA then: 



(a|b)*abb 



Question Worth Asking 

If grammars are much powerful than regular 
expressions, why not using them in lexical 
analysis too? 

• Lexical rules are quite simple and do not 
need notation as powerful as grammars 

• Regular expressions are more concise and 
easier to understand for tokens 

• More efficient lexical analyzers can be 
generated from regular expressions than 
from grammars 



How Can We Enhance Our 
Grammar? 

• Eliminating ambiguity 
• Eliminating left-recursion 
• Left factoring 



Eliminating Ambiguity 

Sometimes we can re-write grammar to  
eliminate ambiguity 





Eliminating Left-Recursion 

How about something like: 



Bilal Alqudah
E -> E+T |T 

we can assume 
A=E
+T= alpha
T= B 



Left-Factoring 

• A way of delaying the decision until 
more info is available 

Example: 

stmt -> EXP else stmt | EXP 
EXP  -> if expr then stmt  
 



Top-Down Parsing 

• Constructing a parse tree for an input 
string starting from root 

• Parse tree built in preorder (depth-first) 

• Finding left-most derivation 
• At each step of a top-down parse: 

– determine the production to be applied 
– matching terminal symbols in production 

body with input string 



Given: and: 



Bilal Alqudah
Recursive - Descent Parsing 

Bilal Alqudah
recursive descent parser is a kind of top-down parser built from a set of mutually recursive procedures 
(or a non-recursive equivalent) 
where each such procedure usually implements one of the productions of the grammar.



Recursive-Descent Parsing 

How? 



Example of Backtracking 
and input 

Bilal Alqudah
   x 
w=cad�

Bilal Alqudah


Bilal Alqudah
A      ab

Bilal Alqudah


Bilal Alqudah
we do backtrack and use the
 other production role �

Bilal Alqudah
A      a

Bilal Alqudah
		�



Important Concepts:  
FIRST and FOLLOW 



Example 
FIRST                      FOLLOW 

( id                          )$ 

+ ε                      )$ 

( id                          + ) $ 

* ε                    + ) $  

( id                      * + ) $ 

Bilal Alqudah
for the followT: we have  E’ , what is the first thing we hit in E’?
it is + | ɛ , 
NOTE: we cannot have  ɛ in the Follow. 
we added the + to the follow .
ɛ can substitute   E’ in role #1.
the new follow will be the follow of E , which is )$�

Bilal Alqudah


Bilal Alqudah
F’�

Bilal Alqudah
T’ =>* | ɛ�

Bilal Alqudah


Bilal Alqudah


Bilal Alqudah


Bilal Alqudah




LL(1) Grammars 
• For recursive-descent parsers with no 

backtracking 
• L = scan from left to right 
• L = left-most derivation 
• 1 symbol lookahead 
• Cannot be left-recursive or ambiguous 
• If A-> F | T   

–  FIRST(F) and FIRST(T) are disjoint 
– if ε is in FIRST(T) then FIRST(F) and FOLLOW(A) 

are disjoint … and likewise when ε is in FIRST(F) 



Parsing Table 



Parsing Table 
• Two dimensional array 

– Rows: nonterminals Columns: input symbols 
• M[A,a] where A is nonterminal and a is terminal 

or $ 
• Gives the production rule to use. 



First                Follow 

( id                          )$ 

+ ε                      )$ 
( id                          + ) $ 
* ε                    + ) $  
( id                      * + ) $ 





Exercise 

For the following productions: 
 
S-> +SS | * SS | a 
 
• Write predictive parser 
• Write parsing table 
• Show how to parse: +*aaa 



Bottom-Up Parsing 

• Given a string of terminals 
• Build parse tree starting from leaves 

and working up toward the root 
• reverse of right-most derivation 
• Used for type of grammars called LR 
• LR parsers are difficult to build by hand 
• We use automatic parser generators for 

LR grammars 



Given: and the string: 



Shift-Reduce Parsing 
• Form of bottom-up parsing 
• Consists of: 

– Stack: holds grammar symbols 
– input buffer: holds the rest of the string to be 

parsed 
• Handle always appears on the top of the stack 

Initial position: Final position (success) 

Actions: shift, reduce, accept, error 





Exercise 

Let’s apply shift-reduce to the following 
input: 00S11 
and the following productions: 
S-> 0S1 | 01 



So… 

• Skim: 4.2.6, 4.3.5, 4.4.4, 4.4.5 
• Read rest of 4.1 to 4.5 


