Informed search algorithms

Chapter 4

Material

- Chapter 4 Section 1 3
- Exclude memory-bounded heuristic search

Outline

- Best-first search
- Greedy best-first search
- A* search
- Heuristics
- Local search algorithms
- Hill-climbing search
- Simulated annealing search
- Local beam search
- Genetic algorithms

Review: Tree search

 A search strategy is defined by picking the order of node expansion

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence inputs: problem, a problem Eval-Fn, an evaluation function

Queueing- $Fn \leftarrow$ a function that orders nodes by EVAL-FN return GENERAL-SEARCH(problem, Queueing-Fn)

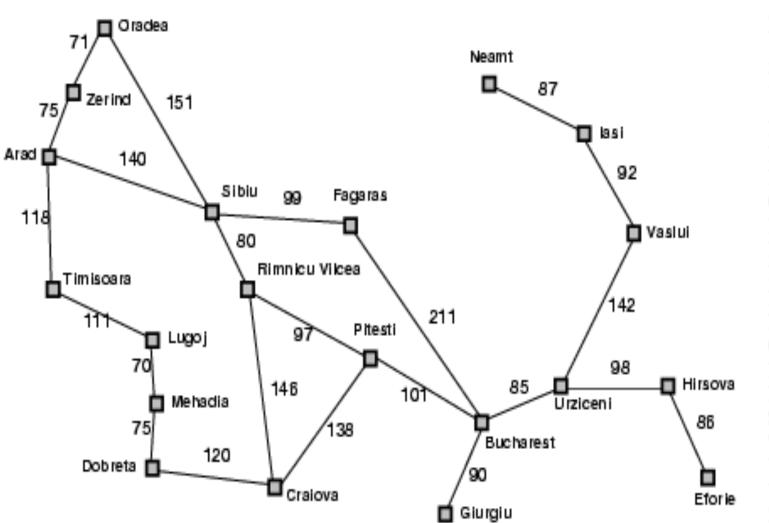
Best-first search

- Idea: use an evaluation function f(n) for each node
 - estimate of "desirability"
 - → Expand most desirable unexpanded node
- <u>Implementation</u>:

Order the nodes in fringe in decreasing order of desirability

- Special cases:
 - greedy best-first search
 - A* search

Romania with step costs in km

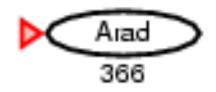


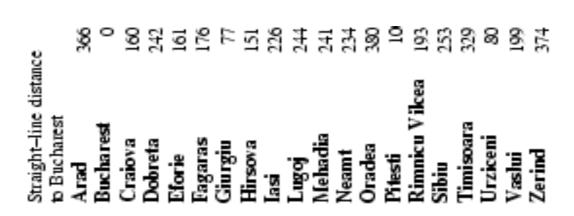
Straight-line distance	
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	30
Vaslui	199
Zerind	374

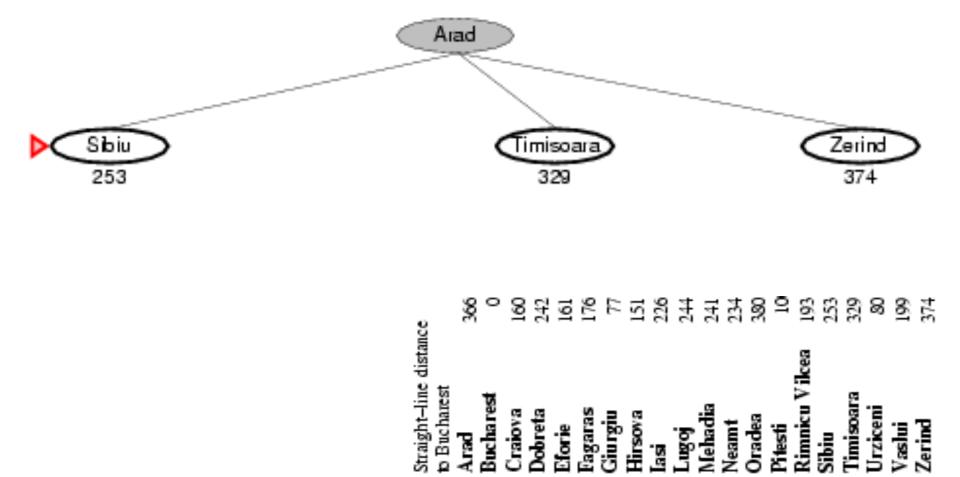
سيستنف سانا والسنسيد

Greedy best-first search

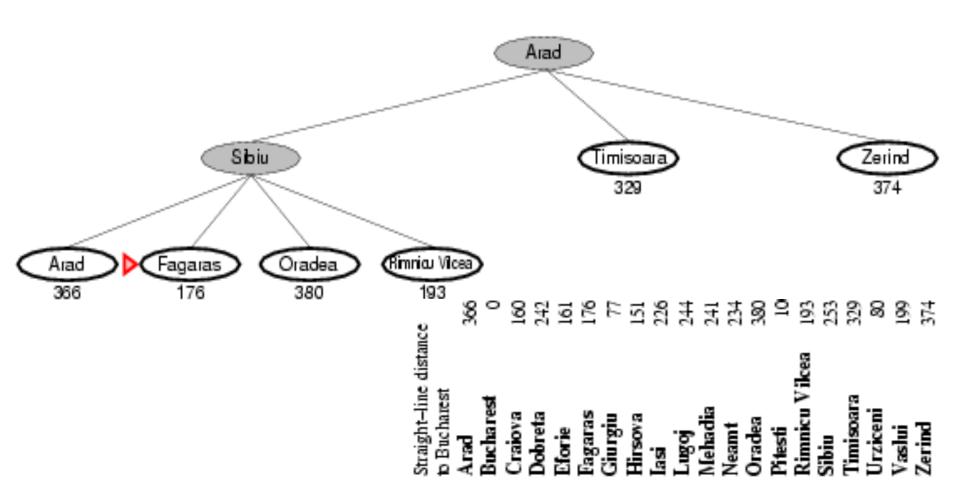
- Evaluation function f(n) = h(n) (heuristic)
- = estimate of cost from n to goal
- e.g., h_{SLD}(n) = straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal



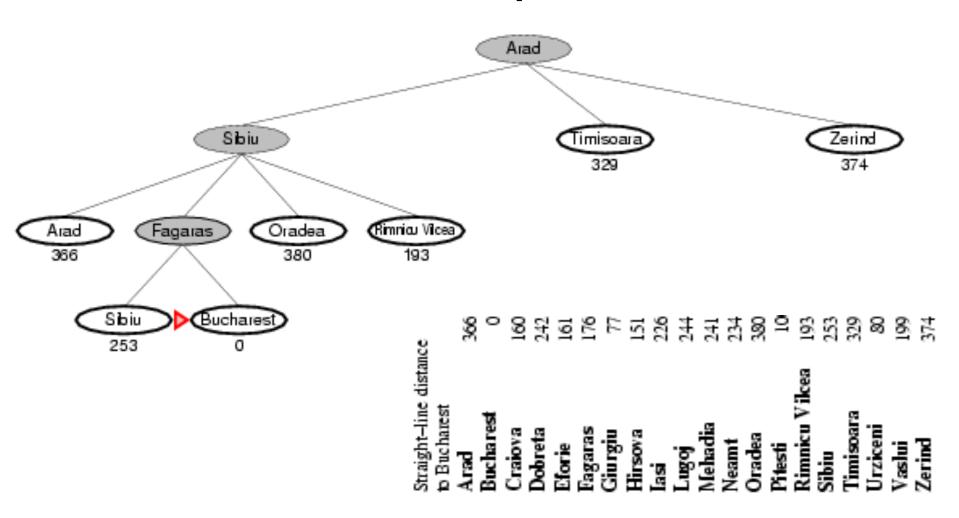




Evaluation function f(n) = h(n) (heuristic), Look for closest, h_{SLD} (Bucharest)= 366 ?



Evaluation function f(n) = h(n) (heuristic), Look for closest, $h_{SLD}(Bucharest) = 366$?



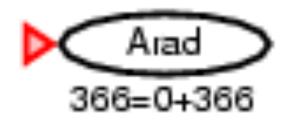
Evaluation function f(n) = h(n) (heuristic), Look for closest, $h_{SLD}(Bucharest) = 366$?

Properties of greedy best-first search

- Complete? No can get stuck in loops,
 e.g., lasi → Neamt → lasi → Neamt →
- <u>Time?</u> $O(b^m)$, but a good heuristic can give dramatic improvement
- Space? O(b^m) -- keeps all nodes in memory
- Optimal? No

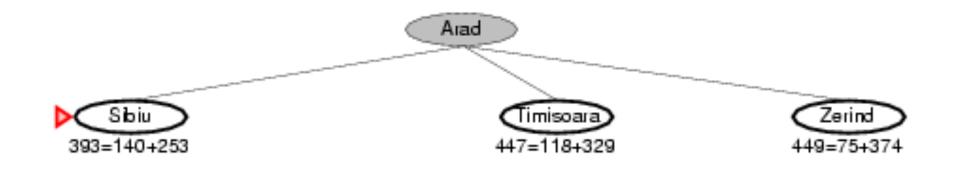
A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
- $g(n) = \cos t \sin t \cos r = \cosh n$
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through
 n to goal



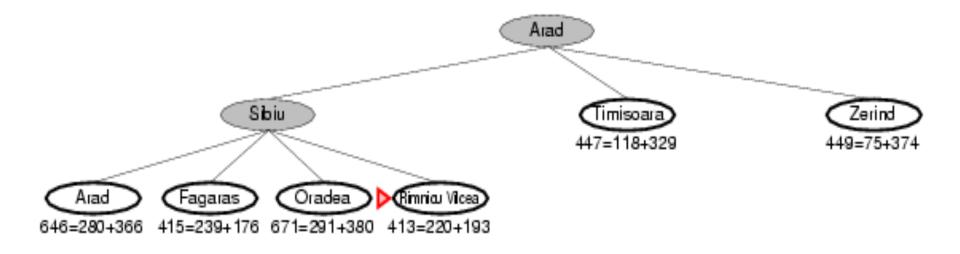
$$f(n) = g(n) + h(n)$$

 $g(n) = \text{cost so far to reach } n$
 $h(n) = \text{estimated cost from } n \text{ to goal}$
 $f(n) = \text{estimated total cost of path through } n \text{ to goal}$



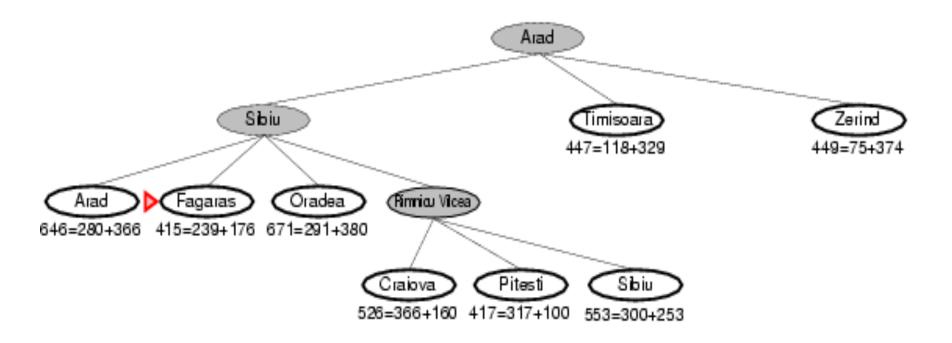
$$f(n) = g(n) + h(n)$$

 $g(n) = \text{cost so far to reach } n$
 $h(n) = \text{estimated cost from } n \text{ to goal}$
 $f(n) = \text{estimated total cost of path through } n \text{ to goal}$



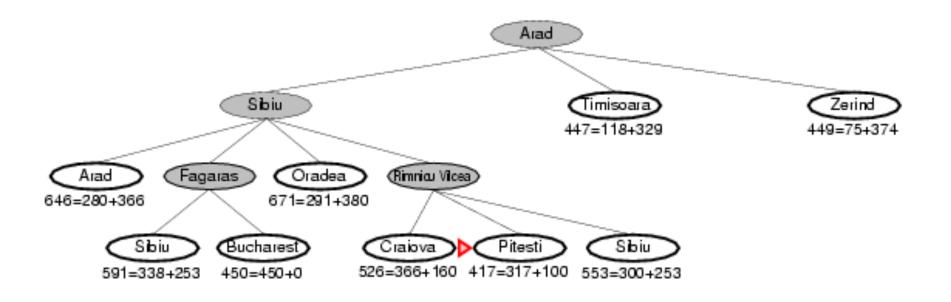
$$f(n) = g(n) + h(n)$$

 $g(n) = \text{cost so far to reach } n$
 $h(n) = \text{estimated cost from } n \text{ to goal}$
 $f(n) = \text{estimated total cost of path through } n \text{ to goal}$



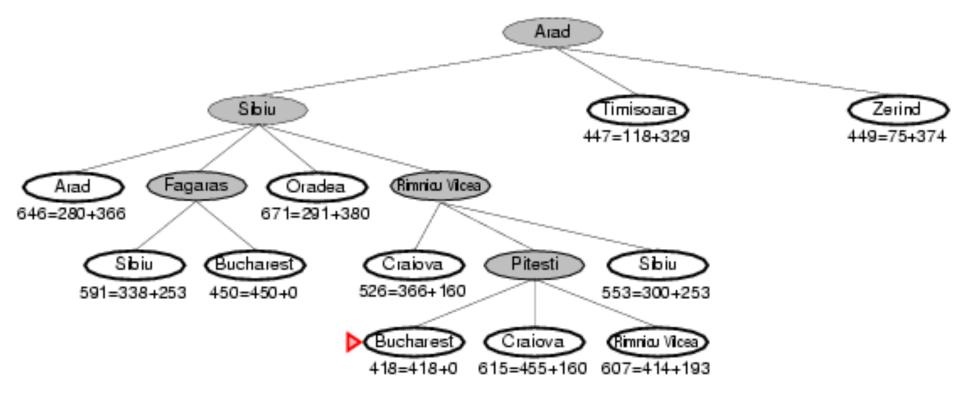
$$f(n) = g(n) + h(n)$$

 $g(n) = \text{cost so far to reach } n$
 $h(n) = \text{estimated cost from } n \text{ to goal}$
 $f(n) = \text{estimated total cost of path through } n \text{ to goal}$



$$f(n) = g(n) + h(n)$$

 $g(n) = \text{cost so far to reach } n$
 $h(n) = \text{estimated cost from } n \text{ to goal}$
 $f(n) = \text{estimated total cost of path through } n \text{ to goal}$



$$f(n) = g(n) + h(n)$$

 $g(n) = \text{cost so far to reach } n$
 $h(n) = \text{estimated cost from } n \text{ to goal}$
 $f(n) = \text{estimated total cost of path through } n \text{ to goal}$

Admissible heuristics

- A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- Theorem: If h(n) is admissible, A* using TREE SEARCH is optimal

Optimality of A* (proof)

Suppose some suboptimal goal G₂ has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

•
$$f(G_2) = g(G_2)$$

•
$$g(G_2) > g(G)$$

•
$$f(G) = g(G)$$

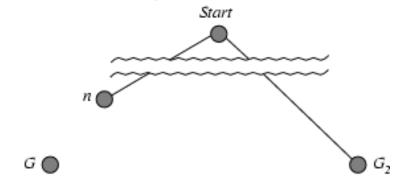
•
$$f(G_2) > f(G)$$

since
$$h(G_2) = 0$$

since
$$h(G) = 0$$

Optimality of A* (proof)

Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.



• f(G₂) > f(G)

from above

- h(n)
 - ≤ h^*(n) since h is admissible
- $g(n) + h(n) \le g(n) + h^*(n)$
- ≤ f(G) f(n)

Hence $f(G_2) > f(n)$, and A* will never select G_2 for expansion

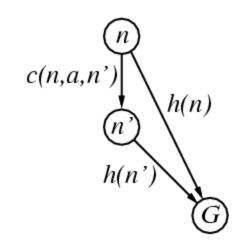
Consistent heuristics

A heuristic is consistent if for every node n, every successor n' of n generated by any action a,

$$h(n) \le c(n,a,n') + h(n')$$

• If *h* is consistent, we have

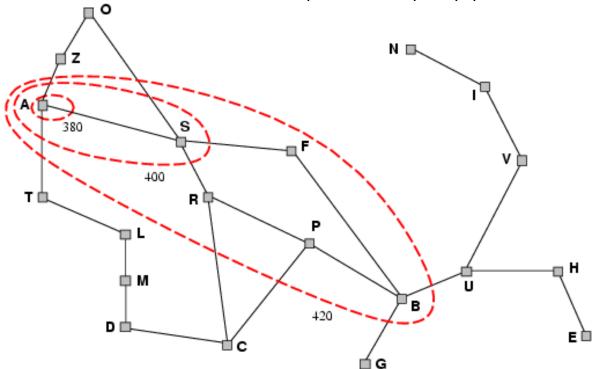
$$f(n')$$
 = $g(n') + h(n')$
= $g(n) + c(n,a,n') + h(n')$
 $\ge g(n) + h(n)$
= $f(n)$



- i.e., f(n) is non-decreasing along any path.
- Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Optimality of A*

- A* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour *i* has all nodes with $f=f_i$, where $f_i < f_{i+1}$



Properties of A\$^*\$

- Complete? Yes (unless there are infinitely many nodes with f ≤ f(G))
- Time? Exponential
- Space? Keeps all nodes in memory
- Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desire

5 6

8 3 1

 3
 4
 5

 6
 7
 8

Start State

Goal State

- $h_1(S) = ?$
- $h_2(S) = ?$

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desire 7 2 4 1 2 3 4 5 8 3 1 6 7 8

- $h_1(S) = ?8$
- $h_2(S) = ? 3+1+2+2+3+3+2 = 18$

Dominance

- If $h_2(n) \ge h_1(n)$ for all n (both admissible)
- then h₂ dominates h₁
- h₂ is better for search
- Typical search costs (average number of nodes expanded):
- d=12 IDS = 3,644,035 nodes $A^*(h_1) = 227$ nodes $A^*(h_2) = 73$ nodes
- d=24 IDS = too many nodes $A^*(h_1) = 39,135$ nodes $A^*(h_2) = 1,641$ nodes

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h₁(n) gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then h₂(n) gives the shortest solution

Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., nqueens
- In such cases, we can use local search algorithms
- keep a single "current" state, try to improve it

Example: *n*-queens

 Put n queens on an n × n board with no two queens on the same row, column, or diagonal

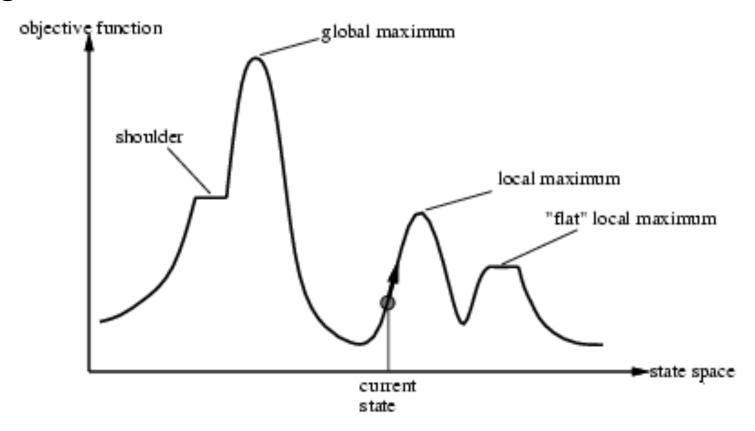
Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

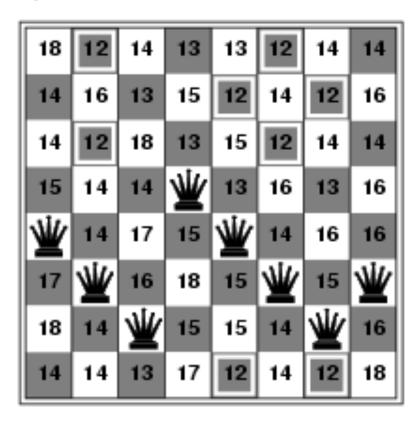
```
function Hill-Climbing (problem) returns a state that is a local maximum inputs: problem, a problem local variables: current, a node neighbor, \text{ a node} current \leftarrow \text{Make-Node}(\text{Initial-State}[problem]) loop do neighbor \leftarrow \text{a highest-valued successor of } current if \text{Value}[\text{neighbor}] \leq \text{Value}[\text{current}] then \text{return State}[current] current \leftarrow neighbor
```

Hill-climbing search

 Problem: depending on initial state, can get stuck in local maxima

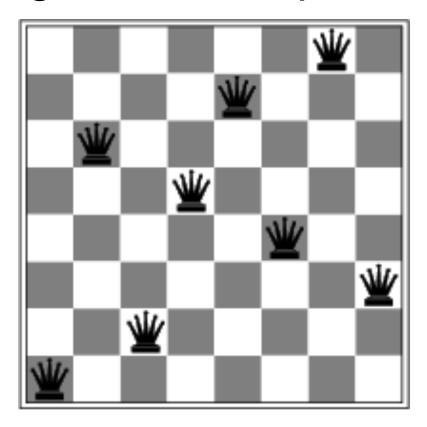


Hill-climbing search: 8-queens problem



- *h* = number of pairs of queens that are attacking each other, either directly or indirectly
- h = 17 for the above state

Hill-climbing search: 8-queens problem



• A local minimum with h = 1

Simulated annealing search

 Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

```
function Simulated Annealing (problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature" local variables: current, a node next, a node T, a "temperature" controlling prob. of downward steps  \begin{array}{c} current \leftarrow \text{Make-Node}(\text{Initial-State}[problem]) \\ \text{for } t \leftarrow 1 \text{ to} \infty \text{ do} \\ T \leftarrow schedule[t] \\ \text{if } T = 0 \text{ then return } current \\ next \leftarrow \text{a randomly selected successor of } current \\ \Delta E \leftarrow \text{Value}[next] - \text{Value}[current] \\ \text{if } \Delta E > 0 \text{ then } current \leftarrow next \\ \text{else } current \leftarrow next \text{ only with probability } e^{\Delta E/T} \\ \end{array}
```

Properties of simulated annealing search

 One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc

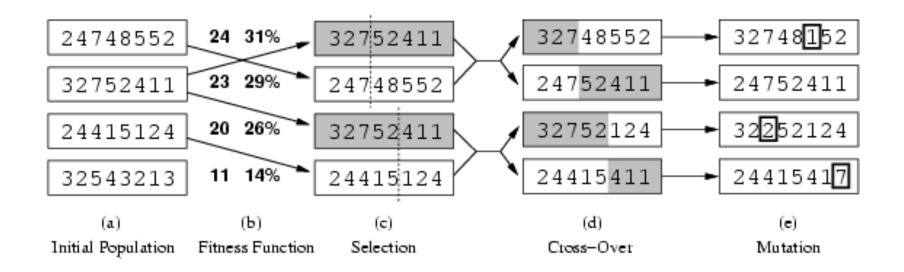
Local beam search

- Keep track of k states rather than just one
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the k
 best successors from the complete list and
 repeat.

Genetic algorithms

- A successor state is generated by combining two parent states
- Start with k randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function). Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation

Genetic algorithms



- Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28)
- 24/(24+23+20+11) = 31%
- 23/(24+23+20+11) = 29% etc

Genetic algorithms

