Informed search algorithms

Chapter 4

Material

- Chapter 4 Section 1-3
- Exclude memory-bounded heuristic search

Outline

- Best-first search
- Greedy best-first search
- A* search
- Heuristics
- Local search algorithms
- Hill-climbing search
- Simulated annealing search
- Local beam search
- Genetic algorithms

Review: Tree search

- A search strategy is defined by picking the order of node expansion
function BEST-FIRST-SEARCH (problem, EVAL-FN) returns a solution sequence inputs: problem, a problem

Eval-Fn, an evaluation function
Queueing-Fn - a function that orders nodes by EVAL-FN return GENERAL-SEARCH(problem, Queueing-Fn)

Best-first search

- Idea: use an evaluation function $f(n)$ for each node
- estimate of "desirability"
\rightarrow Expand most desirable unexpanded node
- Implementation:

Order the nodes in fringe in decreasing order of desirability

- Special cases:
- greedy best-first search
- A* search

Romania with step costs in km

Straight-line distance
to Bucharest
Arad
366
Bucharest 0
Craiova $\quad 160$
Dobreta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova $\quad 151$
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea $\quad 390$
Pitesti $\quad 10$
Rimnicu Vilcea 193
Sibiu 253
Timisoara $\quad 329$
Uraiceni 80
Vaslui $\quad 199$
Zerind 374

Greedy best-first search

- Evaluation function $f(n)=h(n)$ (heuristic)
- = estimate of cost from n to goal
- e.g., $h_{S L D}(n)=$ straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Greedy best-first search example

Evaluation function $f(n)=h(n)$ (heuristic), Look for closest , $\mathrm{h}_{\text {SLD }}$ (Bucharest) $=366$?

Greedy best-first search example

Evaluation function $f(n)=h(n)$ (heuristic), Look for closest , $\mathrm{h}_{\text {SLD }}$ (Bucharest) $=366$?

Greedy best-first search example

Evaluation function $f(n)=h(n)$ (heuristic), Look for closest , $\mathrm{h}_{\text {SLD }}$ (Bucharest) $=366$?

Greedy best-first search example

Evaluation function $f(n)=h(n)$ (heuristic), Look for closest , $\mathrm{h}_{\text {SLD }}$ (Bucharest) $=366 ?$

Properties of greedy best-first search

- Complete? No - can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
- Time? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement
- Space? $O\left(b^{m}\right)$-- keeps all nodes in memory
- Optimal? No

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function $f(n)=g(n)+h(n)$
- $g(n)=$ cost so far to reach n
- $h(n)=$ estimated cost from n to goal
- $f(n)=$ estimated total cost of path through n to goal

A* search example

Arad

$366=0+366$

$f(n)=g(n)+h(n)$
$g(n)=$ cost so far to reach n
$h(n)=$ estimated cost from n to goal
$f(n)=$ estimated total cost of path through n to goal

A* search example

$f(n)=g(n)+h(n)$
$g(n)=$ cost so far to reach n
$h(n)=$ estimated cost from n to goal
$f(n)=$ estimated total cost of path through n to goal

A* search example

$f(n)=g(n)+h(n)$
$g(n)=$ cost so far to reach n
$h(n)=$ estimated cost from n to goal
$f(n)=$ estimated total cost of path through n to goal

A* search example

$f(n)=g(n)+h(n)$
$g(n)=$ cost so far to reach n
$h(n)=$ estimated cost from n to goal
$f(n)=$ estimated total cost of path through n to goal

A* search example

$f(n)=g(n)+h(n)$
$g(n)=$ cost so far to reach n
$h(n)=$ estimated cost from n to goal
$f(n)=$ estimated total cost of path through n to goal

A* search example

$f(n)=g(n)+h(n)$
$g(n)=$ cost so far to reach n
$h(n)=$ estimated cost from n to goal
$f(n)=$ estimated total cost of path through n to goal

Admissible heuristics

- A heuristic $h(n)$ is admissible if for every node n, $h(n) \leq h^{*}(n)$, where $h^{*}(n)$ is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{S L D}(n)$ (never overestimates the actual road distance)
- Theorem: If $h(n)$ is admissible, A^{*} using TREESEARCH is optimal

Optimality of A^{*} (proof)

- Suppose some suboptimal goal G_{2} has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f\left(G_{2}\right)=g\left(G_{2}\right)$
- $g\left(G_{2}\right)>g(G)$
- $f(G)=g(G)$
- $f\left(G_{2}\right)>f(G)$
since $h\left(\mathrm{G}_{2}\right)=0$
since G_{2} is suboptimal
since $h(\mathrm{G})=0$
from above

Optimality of A^{*} (proof)

- Suppose some suboptimal goal G_{2} has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f\left(G_{2}\right)$
$>f(G)$
- $h(n) \quad \leq h^{\wedge *}(n)$
- $g(n)+h(n) \leq g(n)+h^{*}(n)$
- $f(n) \quad \leq f(G)$

Hence $f\left(G_{2}\right)>f(n)$, and A^{*} will never select G_{2} for expansion

Consistent heuristics

- A heuristic is consistent if for every node n, every successor n ' of n generated by any action a,

$$
h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)
$$

- If h is consistent, we have
$f\left(n^{\prime}\right) \quad=g\left(n^{\prime}\right)+h\left(n^{\prime}\right)$

$$
=g(n)+c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)
$$

$\geq g(n)+h(n)$
$=f(n)$

- i.e., $f(n)$ is non-decreasing along any path.
- Theorem: If $h(n)$ is consistent, A* using GRAPH-SEARCH is optimal

Optimality of A^{*}

- A^{*} expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour i has all nodes with $f=f_{i}$, where $f_{i}<f_{i+1}$

Properties of $A \$^{\wedge *} \$$

- Complete? Yes (unless there are infinitely many nodes with $f \leq f(G)$)
- Time? Exponential
- Space? Keeps all nodes in memory
- Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

- $h_{1}(n)=$ number of misplaced tiles
- $h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desir

- $\underline{h}_{1}(S)=$?

Start State

- $\underline{h}_{2}(S)=$?

Admissible heuristics

E.g., for the 8-puzzle:

- $h_{1}(n)=$ number of misplaced tiles
- $h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desir

- $h_{1}(S)=? 8$
- $\underline{h}_{2}(S)=? 3+1+2+2+2+3+3+2=18$

Dominance

- If $h_{2}(n) \geq h_{1}(n)$ for all n (both admissible)
- then h_{2} dominates h_{1}
- h_{2} is better for search
- Typical search costs (average number of nodes expanded):
- $d=12$ IDS $=3,644,035$ nodes
$A^{*}\left(h_{1}\right)=227$ nodes
$A^{*}\left(h_{2}\right)=73$ nodes
- $d=24 \quad$ IDS $=$ too many nodes
$A^{*}\left(h_{1}\right)=39,135$ nodes
$A^{*}\left(h_{2}\right)=1,641$ nodes

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_{1}(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_{2}(n)$ gives the shortest solution

Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., nqueens
- In such cases, we can use local search algorithms
- keep a single "current" state, try to improve it

Example: n-queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Hill-climbing search

- "Like climbing Everest in thick fog with amnesia"
function Hill-Climbing (problem) returns a state that is a local maximum inputs: problem, a problem
local variables: current, a node
neighbor, a node
current \leftarrow Make-Node(Initial-State[problem])
loop do
neighbor \leftarrow a highest-valued successor of current
if Value[neighbor] \leq Value[current] then return State[current]
current \leftarrow neighbor

Hill-climbing search

- Problem: depending on initial state, can get stuck in local maxima

Hill-climbing search: 8-queens problem

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	N/4	13	16	13	16
V/	14	17	15	W/	14	16	16
17	W	16	18	15	W/'	15	N/
18	14	V'ly	15	15	14	N/4	16
14	14	13	17	12	14	12	18

- $h=$ number of pairs of queens that are attacking each other, either directly or indirectly
- $\quad h=17$ for the above state

Hill-climbing search: 8-queens problem

- A local minimum with $h=1$

Simulated annealing search

- Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

```
function Simulated-AnNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
        schedule, a mapping from time to "temperature"
    local variables: current, a node
            next, a node
            T, a "temperature" controlling prob. of downward steps
    current }\leftarrow\mathrm{ Make-Node(Initial-State[problem])
    for }t\leftarrow1\mathrm{ to }\infty\mathrm{ do
        T\leftarrow\mathrm{ schedule [t]}]
        if T=0 then return current
        next \leftarrow < randomly selected successor of current
        \DeltaE\leftarrow Value[next] - Value[current]
        if }\DeltaE>0\mathrm{ then current }\leftarrow\mathrm{ next
        else current }\leftarrow\mathrm{ next only with probability e}\mp@subsup{e}{}{\DeltaE/T
```


Properties of simulated annealing search

- One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1
- Widely used in VLSI layout, airline scheduling, etc

Local beam search

- Keep track of k states rather than just one
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the k best successors from the complete list and repeat.

Genetic algorithms

- A successor state is generated by combining two parent states
- Start with k randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0 s and 1 s)
- Evaluation function (fitness function). Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation

senctic atorithns

- Fitness function: number of non-attacking pairs of queens ($\mathrm{min}=0$, $\max =8 \times 7 / 2=28$)
- $24 /(24+23+20+11)=31 \%$
- $23 /(24+23+20+11)=29 \%$ etc

Genetic algorithms

