## Informed search algorithms

Chapter 4

#### Material

- Chapter 4 Section 1 3
- Exclude memory-bounded heuristic search

#### Outline

- Best-first search
- Greedy best-first search
- A\* search
- Heuristics
- Local search algorithms
- Hill-climbing search
- Simulated annealing search
- Local beam search
- Genetic algorithms

#### Review: Tree search

 A search strategy is defined by picking the order of node expansion

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence inputs: problem, a problem Eval-Fn, an evaluation function

Queueing- $Fn \leftarrow$  a function that orders nodes by EVAL-FN return GENERAL-SEARCH(problem, Queueing-Fn)

#### Best-first search

- Idea: use an evaluation function f(n) for each node
  - estimate of "desirability"
  - → Expand most desirable unexpanded node
- <u>Implementation</u>:

Order the nodes in fringe in decreasing order of desirability

- Special cases:
  - greedy best-first search
  - A\* search

## Romania with step costs in km



| Straight-line distance |     |
|------------------------|-----|
| to Bucharest           |     |
| Arad                   | 366 |
| Bucharest              | 0   |
| Craiova                | 160 |
| Dobreta                | 242 |
| Eforie                 | 161 |
| Fagaras                | 176 |
| Giurgiu                | 77  |
| Hirsova                | 151 |
| Iasi                   | 226 |
| Lugoj                  | 244 |
| Mehadia                | 241 |
| Neamt                  | 234 |
| Oradea                 | 380 |
| Pitesti                | 10  |
| Rimnicu Vilcea         | 193 |
| Sibiu                  | 253 |
| Timisoara              | 329 |
| Urziceni               | 30  |
| Vaslui                 | 199 |
| Zerind                 | 374 |

سيستنف سانا والسنسيد

## Greedy best-first search

- Evaluation function f(n) = h(n) (heuristic)
- = estimate of cost from n to goal
- e.g., h<sub>SLD</sub>(n) = straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal







Evaluation function f(n) = h(n) (heuristic), Look for closest,  $h_{SLD}$ (Bucharest)= 366 ?



Evaluation function f(n) = h(n) (heuristic), Look for closest,  $h_{SLD}(Bucharest) = 366$ ?



Evaluation function f(n) = h(n) (heuristic), Look for closest,  $h_{SLD}(Bucharest) = 366$ ?

# Properties of greedy best-first search

- Complete? No can get stuck in loops,
   e.g., lasi → Neamt → lasi → Neamt →
- <u>Time?</u>  $O(b^m)$ , but a good heuristic can give dramatic improvement
- Space? O(b<sup>m</sup>) -- keeps all nodes in memory
- Optimal? No

#### A\* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
- $g(n) = \cos t \sin t \cos r = \cosh n$
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through
   n to goal



$$f(n) = g(n) + h(n)$$
  
 $g(n) = \text{cost so far to reach } n$   
 $h(n) = \text{estimated cost from } n \text{ to goal}$   
 $f(n) = \text{estimated total cost of path through } n \text{ to goal}$ 



$$f(n) = g(n) + h(n)$$
  
 $g(n) = \text{cost so far to reach } n$   
 $h(n) = \text{estimated cost from } n \text{ to goal}$   
 $f(n) = \text{estimated total cost of path through } n \text{ to goal}$ 



$$f(n) = g(n) + h(n)$$
  
 $g(n) = \text{cost so far to reach } n$   
 $h(n) = \text{estimated cost from } n \text{ to goal}$   
 $f(n) = \text{estimated total cost of path through } n \text{ to goal}$ 



$$f(n) = g(n) + h(n)$$
  
 $g(n) = \text{cost so far to reach } n$   
 $h(n) = \text{estimated cost from } n \text{ to goal}$   
 $f(n) = \text{estimated total cost of path through } n \text{ to goal}$ 



$$f(n) = g(n) + h(n)$$
  
 $g(n) = \text{cost so far to reach } n$   
 $h(n) = \text{estimated cost from } n \text{ to goal}$   
 $f(n) = \text{estimated total cost of path through } n \text{ to goal}$ 



$$f(n) = g(n) + h(n)$$
  
 $g(n) = \text{cost so far to reach } n$   
 $h(n) = \text{estimated cost from } n \text{ to goal}$   
 $f(n) = \text{estimated total cost of path through } n \text{ to goal}$ 

#### Admissible heuristics

- A heuristic h(n) is admissible if for every node n, h(n) ≤ h\*(n), where h\*(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example:  $h_{SLD}(n)$  (never overestimates the actual road distance)
- Theorem: If h(n) is admissible, A\* using TREE SEARCH is optimal

# Optimality of A\* (proof)

Suppose some suboptimal goal G<sub>2</sub> has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

• 
$$f(G_2) = g(G_2)$$

• 
$$g(G_2) > g(G)$$

• 
$$f(G) = g(G)$$

• 
$$f(G_2) > f(G)$$

since 
$$h(G_2) = 0$$

since 
$$h(G) = 0$$

# Optimality of A\* (proof)

Suppose some suboptimal goal  $G_2$  has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.



• f(G<sub>2</sub>) > f(G)

from above

- h(n)
  - ≤ h^\*(n) since h is admissible
- $g(n) + h(n) \le g(n) + h^*(n)$
- ≤ f(G) f(n)

Hence  $f(G_2) > f(n)$ , and A\* will never select  $G_2$  for expansion

#### Consistent heuristics

A heuristic is consistent if for every node n, every successor n' of n generated by any action a,

$$h(n) \le c(n,a,n') + h(n')$$

• If *h* is consistent, we have

$$f(n')$$
 =  $g(n') + h(n')$   
=  $g(n) + c(n,a,n') + h(n')$   
 $\ge g(n) + h(n)$   
=  $f(n)$ 



- i.e., f(n) is non-decreasing along any path.
- Theorem: If h(n) is consistent, A\* using GRAPH-SEARCH is optimal

# Optimality of A\*

- A\* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour *i* has all nodes with  $f=f_i$ , where  $f_i < f_{i+1}$



## Properties of A\$^\*\$

- Complete? Yes (unless there are infinitely many nodes with f ≤ f(G))
- Time? Exponential
- Space? Keeps all nodes in memory
- Optimal? Yes

#### Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$  = number of misplaced tiles
- $h_2(n)$  = total Manhattan distance

(i.e., no. of squares from desire

5 6

8 3 1

 3
 4
 5

 6
 7
 8

Start State

Goal State

- $h_1(S) = ?$
- $h_2(S) = ?$

#### Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$  = number of misplaced tiles
- $h_2(n)$  = total Manhattan distance

(i.e., no. of squares from desire 7 2 4 1 2 3 4 5 8 3 1 6 7 8

- $h_1(S) = ?8$
- $h_2(S) = ? 3+1+2+2+3+3+2 = 18$

#### Dominance

- If  $h_2(n) \ge h_1(n)$  for all n (both admissible)
- then h<sub>2</sub> dominates h<sub>1</sub>
- h<sub>2</sub> is better for search
- Typical search costs (average number of nodes expanded):
- d=12 IDS = 3,644,035 nodes  $A^*(h_1) = 227$  nodes  $A^*(h_2) = 73$  nodes
- d=24 IDS = too many nodes  $A^*(h_1) = 39,135$  nodes  $A^*(h_2) = 1,641$  nodes

### Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h<sub>1</sub>(n) gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then h<sub>2</sub>(n) gives the shortest solution

## Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., nqueens
- In such cases, we can use local search algorithms
- keep a single "current" state, try to improve it

### Example: *n*-queens

 Put n queens on an n × n board with no two queens on the same row, column, or diagonal



## Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

```
function Hill-Climbing (problem) returns a state that is a local maximum inputs: problem, a problem local variables: current, a node neighbor, \text{ a node} current \leftarrow \text{Make-Node}(\text{Initial-State}[problem]) loop do neighbor \leftarrow \text{a highest-valued successor of } current if \text{Value}[\text{neighbor}] \leq \text{Value}[\text{current}] then \text{return State}[current] current \leftarrow neighbor
```

### Hill-climbing search

 Problem: depending on initial state, can get stuck in local maxima



#### Hill-climbing search: 8-queens problem



- *h* = number of pairs of queens that are attacking each other, either directly or indirectly
- h = 17 for the above state

#### Hill-climbing search: 8-queens problem



• A local minimum with h = 1

## Simulated annealing search

 Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

```
function Simulated Annealing (problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature" local variables: current, a node next, a node T, a "temperature" controlling prob. of downward steps  \begin{array}{c} current \leftarrow \text{Make-Node}(\text{Initial-State}[problem]) \\ \text{for } t \leftarrow 1 \text{ to} \infty \text{ do} \\ T \leftarrow schedule[t] \\ \text{if } T = 0 \text{ then return } current \\ next \leftarrow \text{a randomly selected successor of } current \\ \Delta E \leftarrow \text{Value}[next] - \text{Value}[current] \\ \text{if } \Delta E > 0 \text{ then } current \leftarrow next \\ \text{else } current \leftarrow next \text{ only with probability } e^{\Delta E/T} \\ \end{array}
```

# Properties of simulated annealing search

 One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc

#### Local beam search

- Keep track of k states rather than just one
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the k
  best successors from the complete list and
  repeat.

## Genetic algorithms

- A successor state is generated by combining two parent states
- Start with k randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function). Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation

## Genetic algorithms



- Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28)
- 24/(24+23+20+11) = 31%
- 23/(24+23+20+11) = 29% etc

## Genetic algorithms

