
Solving problems / searching

Chapter 3

CS 3243 - Blind Search 1

CS 3243 - Blind Search 2

Outline

n  Problem-solving agents
n  Problem types
n  Problem formulation
n  Example problems
n  Basic search algorithms

14 Jan 2004 CS 3243 - Blind Search 3

Problem-solving agents

14 Jan 2004 CS 3243 - Blind Search 4

Example: Romania

n  On holiday in Romania; currently in Arad.
n  Flight leaves tomorrow from Bucharest
n  Formulate goal:

n  be in Bucharest
n  Formulate problem:

n  states: various cities
n  actions: drive between cities

n  Find solution:
n  sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

14 Jan 2004 CS 3243 - Blind Search 5

Example: Romania

14 Jan 2004 CS 3243 - Blind Search 6

Problem types

n  Deterministic, fully observable à single-state problem
n  Agent knows exactly which state it will be in; solution is a sequence

n  Non-observable à sensorless problem (conformant
problem)
n  Agent may have no idea where it is; solution is a sequence

n  Nondeterministic and/or partially observable à contingency
problem
n  percepts provide new information about current state
n  often interleave} search, execution

n  Unknown state space à exploration problem

14 Jan 2004 CS 3243 - Blind Search 7

Example: vacuum world

n  Single-state, start in #5.
Solution?

14 Jan 2004 CS 3243 - Blind Search 8

Example: vacuum world

n  Single-state, start in #5.
Solution? [Right, Suck]

n  Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?

14 Jan 2004 CS 3243 - Blind Search 9

Example: vacuum world

n  Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

n  Contingency
n  Nondeterministic: Suck may

dirty a clean carpet
n  Partially observable: location, dirt at current location.
n  Percept: [L, Clean], i.e., start in #5 or #7

Solution?

14 Jan 2004 CS 3243 - Blind Search 10

Example: vacuum world

n  Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

n  Contingency
n  Nondeterministic: Suck may

dirty a clean carpet
n  Partially observable: location, dirt at current location.
n  Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]

14 Jan 2004 CS 3243 - Blind Search 11

Single-state problem formulation

A problem is defined by four items:

1.  initial state e.g., "at Arad"
2.  actions or successor function S(x) = set of action–state pairs

n  e.g., S(Arad) = {<Arad à Zerind, Zerind>, … }
3.  goal test, can be

n  explicit, e.g., x = "at Bucharest"
n  implicit, e.g., Checkmate(x)

4.  path cost (additive)
n  e.g., sum of distances, number of actions executed, etc.
n  c(x,a,y) is the step cost, assumed to be ≥ 0

n  A solution is a sequence of actions leading from the initial state to a
goal state

14 Jan 2004 CS 3243 - Blind Search 12

Selecting a state space

n  Real world is absurdly complex
à state space must be abstracted for problem solving

n  (Abstract) state = set of real states
n  (Abstract) action = complex combination of real actions

n  e.g., "Arad à Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

n  For guaranteed realizability, any real state "in Arad“ must
get to some real state "in Zerind"

n  (Abstract) solution =
n  set of real paths that are solutions in the real world

n  Each abstract action should be "easier" than the original
problem

14 Jan 2004 CS 3243 - Blind Search 13

Vacuum world state space graph

n  states?
n  actions?
n  goal test?
n  path cost?

14 Jan 2004 CS 3243 - Blind Search 14

Vacuum world state space graph

n  states? integer dirt and robot location
n  actions? Left, Right, Suck

n  goal test? no dirt at all locations

n  path cost? 1 per action

14 Jan 2004 CS 3243 - Blind Search 15

Example: The 8-puzzle

n  states?
n  actions?
n  goal test?
n  path cost?

14 Jan 2004 CS 3243 - Blind Search 16

Example: The 8-puzzle

n  states? locations of tiles
n  actions? move blank left, right, up, down
n  goal test? = goal state (given)
n  path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

14 Jan 2004 CS 3243 - Blind Search 17

Example: robotic assembly

n  states?: real-valued coordinates of robot joint
angles parts of the object to be assembled

n  actions?: continuous motions of robot joints
n  goal test?: complete assembly
n  path cost?: time to execute

14 Jan 2004 CS 3243 - Blind Search 18

Tree search algorithms

n  Basic idea:
n  offline, simulated exploration of state space by

generating successors of already-explored states
(a.k.a.~expanding states)

14 Jan 2004 CS 3243 - Blind Search 19

Tree search example

14 Jan 2004 CS 3243 - Blind Search 20

Tree search example

14 Jan 2004 CS 3243 - Blind Search 21

Tree search example

14 Jan 2004 CS 3243 - Blind Search 22

Implementation: general tree search

14 Jan 2004 CS 3243 - Blind Search 23

Implementation: states vs. nodes

n  A state is a (representation of) a physical configuration
n  A node is a data structure constituting part of a search tree

includes state, parent node, action, path cost g(x), depth

n  The Expand function creates new nodes, filling in the
various fields and using the SuccessorFn of the problem
to create the corresponding states.

14 Jan 2004 CS 3243 - Blind Search 24

Search strategies

n  A search strategy is defined by picking the order of node
expansion

n  Strategies are evaluated along the following dimensions:
n  completeness: does it always find a solution if one exists?
n  time complexity: number of nodes generated
n  space complexity: maximum number of nodes in memory
n  optimality: does it always find a least-cost solution?

n  Time and space complexity are measured in terms of
n  b: maximum branching factor of the search tree
n  d: depth of the least-cost solution
n  m: maximum depth of the state space (may be ∞)

14 Jan 2004 CS 3243 - Blind Search 25

Uninformed search strategies

n  Uninformed search strategies use only the
information available in the problem
definition

n  Breadth-first search
n  Uniform-cost search
n  Depth-first search
n  Depth-limited search
n  Iterative deepening search

14 Jan 2004 CS 3243 - Blind Search 26

Breadth-first search

n  Expand shallowest unexpanded node
n  Implementation:

n  fringe is a FIFO queue, i.e., new successors go
at end

14 Jan 2004 CS 3243 - Blind Search 27

Breadth-first search

n  Expand shallowest unexpanded node

n  Implementation:

n  fringe is a FIFO queue, i.e., new successors go
at end

14 Jan 2004 CS 3243 - Blind Search 28

Breadth-first search

n  Expand shallowest unexpanded node

n  Implementation:

n  fringe is a FIFO queue, i.e., new successors go
at end

14 Jan 2004 CS 3243 - Blind Search 29

Breadth-first search

n  Expand shallowest unexpanded node
n  Implementation:

n  fringe is a FIFO queue, i.e., new successors go
at end

14 Jan 2004 CS 3243 - Blind Search 30

Properties of breadth-first search

n  Complete? Yes (if b is finite)
n  Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)
n  Space? O(bd+1) (keeps every node in memory)
n  Optimal? Yes (if cost = 1 per step)

n  Space is the bigger problem (more than time)

14 Jan 2004 CS 3243 - Blind Search 31

Uniform-cost search

n  Expand least-cost unexpanded node
n  Implementation:

n  fringe = queue ordered by path cost
n  Equivalent to breadth-first if step costs all equal
n  Complete? Yes, if step cost ≥ ε
n  Time? # of nodes with g ≤ cost of optimal solution,

O(bceiling(C*/ ε)) where C* is the cost of the optimal solution
n  Space? # of nodes with g ≤ cost of optimal solution,

O(bceiling(C*/ ε))
n  Optimal? Yes – nodes expanded in increasing order of g(n)

14 Jan 2004 CS 3243 - Blind Search 32

Depth-first search

n  Expand deepest unexpanded node
n  Implementation:

n  fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 33

Depth-first search

n  Expand deepest unexpanded node
n  Implementation:

n  fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 34

Depth-first search

n  Expand deepest unexpanded node
n  Implementation:

n  fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 35

Depth-first search

n  Expand deepest unexpanded node
n  Implementation:

n  fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 36

Depth-first search

n  Expand deepest unexpanded node
n  Implementation:

n  fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 37

Depth-first search

n  Expand deepest unexpanded node
n  Implementation:

n  fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 38

Depth-first search

n  Expand deepest unexpanded node
n  Implementation:

n  fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 39

Depth-first search

n  Expand deepest unexpanded node
n  Implementation:

n  fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 40

Depth-first search

n  Expand deepest unexpanded node
n  Implementation:

n  fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 41

Depth-first search

n  Expand deepest unexpanded node
n  Implementation:

n  fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 42

Depth-first search

n  Expand deepest unexpanded node
n  Implementation:

n  fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 43

Depth-first search

n  Expand deepest unexpanded node
n  Implementation:

n  fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 44

Properties of depth-first search

n  Complete? No: fails in infinite-depth spaces, spaces
with loops
n  Modify to avoid repeated states along path

à complete in finite spaces

n  Time? O(bm): terrible if m is much larger than d
n  but if solutions are dense, may be much faster than

breadth-first

n  Space? O(bm), i.e., linear space!
n  Optimal? No

14 Jan 2004 CS 3243 - Blind Search 45

Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

n  Recursive implementation:

14 Jan 2004 CS 3243 - Blind Search 46

Iterative deepening search

14 Jan 2004 CS 3243 - Blind Search 47

Iterative deepening search l =0

14 Jan 2004 CS 3243 - Blind Search 48

Iterative deepening search l =1

14 Jan 2004 CS 3243 - Blind Search 49

Iterative deepening search l =2

14 Jan 2004 CS 3243 - Blind Search 50

Iterative deepening search l =3

14 Jan 2004 CS 3243 - Blind Search 51

Iterative deepening search

n  Number of nodes generated in a depth-limited search to
depth d with branching factor b:

 NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

n  Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

n  For b = 10, d = 5,
n  NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
n  NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

n  Overhead = (123,456 - 111,111)/111,111 = 11%

14 Jan 2004 CS 3243 - Blind Search 52

Properties of iterative deepening search

n  Complete? Yes
n  Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd =

O(bd)
n  Space? O(bd)
n  Optimal? Yes, if step cost = 1

14 Jan 2004 CS 3243 - Blind Search 53

Summary of algorithms

14 Jan 2004 CS 3243 - Blind Search 54

Repeated states

n  Failure to detect repeated states can turn a
linear problem into an exponential one!

14 Jan 2004 CS 3243 - Blind Search 55

Graph search

14 Jan 2004 CS 3243 - Blind Search 56

Summary

n  Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

n  Variety of uninformed search strategies

n  Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

