Solving problems / searching

Chapter 3

Outline

- Problem-solving agents
- Problem types
- Problem formulation
- Example problems
- Basic search algorithms

Problem-solving agents

```
function Simple-ProblEm-SOlving-AGENT( percept) returns an action
    static: seq, an action sequence, initially empty
            state, some description of the current world state
            goal, a goal, initially null
            problem, a problem formulation
    state}\leftarrow\mathrm{ UPDATE-STATE(state, percept)
    if seq is empty then do
        goal }\leftarrow\mathrm{ FORMULATE-GOAL(state)
        problem}\leftarrow~\mathrm{ Formulate-Problem(state, goal)
        seq\leftarrowSEARCH(problem)
    action }\leftarrow\textrm{FIRST}(seq
    seq\leftarrowRERT(seq)
    return action
```


Example: Romania

- On holiday in Romania; currently in Arad.
- Flight leaves tomorrow from Bucharest
- Formulate goal:
- be in Bucharest
- Formulate problem:
- states: various cities
- actions: drive between cities
- Find solution:
- sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Example: Romania

14 Jan 2004
CS 3243 - Blind Search

Problem types

- Deterministic, fully observable \rightarrow single-state problem
- Agent knows exactly which state it will be in; solution is a sequence
- Non-observable \rightarrow sensorless problem (conformant problem)
- Agent may have no idea where it is; solution is a sequence
- Nondeterministic and/or partially observable \rightarrow contingency problem
- percepts provide new information about current state
- often interleave\} search, execution
- Unknown state space \rightarrow exploration problem

Example: vacuum world

- Single-state, start in \#5. Solution?

4

Example: vacuum world

- Single-state, start in \#5. Solution? [Right, Suck]
- Sensorless, start in \{1,2,3,4,5,6,7,8\} e.g., Right goes to $\{2,4,6,8\}$ Solution?

Example: vacuum world

Sensorless, start in \{1,2,3,4,5,6,7,8\} e.g., Right goes to $\{2,4,6,8\}$ Solution?
[Right,Suck,Left,Suck]

- Contingency
- Nondeterministic: Suck may dirty a clean carpet
- Partially observable: location, dirı al currélic ivcauui.
- Percept: [L, Clean], i.e., start in \#5 or \#7 Solution?

Example: vacuum world

Sensorless, start in \{1,2,3,4,5,6,7,8\} e.g., Right goes to $\{2,4,6,8\}$ Solution?
[Right,Suck,Left,Suck]

- Contingency
- Nondeterministic: Suck may dirty a clean carpet
- Partially observable: location, dirı al currentic ivcauiu.
- Percept: [L, Clean], i.e., start in \#5 or \#7 Solution? [Right, if dirt then Suck]

Single-state problem formulation

A problem is defined by four items:

1. initial state e.g., "at Arad"
2. actions or successor function $S(x)=$ set of action-state pairs

- e.g., $S($ Arad $)=\{\langle$ Arad \rightarrow Zerind, Zerind $\rangle, \ldots\}$

3. goal test, can be

- explicit, e.g., $x=$ "at Bucharest"
- implicit, e.g., Checkmate((x)

4. path cost (additive)

- e.g., sum of distances, number of actions executed, etc.
- $c(x, a, y)$ is the step cost, assumed to be ≥ 0
- A solution is a sequence of actions leading from the initial state to a goal state

Selecting a state space

- Real world is absurdly complex
\rightarrow state space must be abstracted for problem solving
- (Abstract) state = set of real states
- (Abstract) action = complex combination of real actions
- e.g., "Arad \rightarrow Zerind" represents a complex set of possible routes, detours, rest stops, etc.
- For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"
- (Abstract) solution =
- set of real paths that are solutions in the real world
- Each abstract action should be "easier" than the original problem

Vacuum world state space graph

- states:

- actions?
- goal test?
- path cost?

Vacuum world state space graph

- states? integer dirt and robot location
- actions? Left, Right, Suck
- goal test? no dirt at all locations
- path cost? 1 per action

Example: The 8-puzzle

Start State

Goal State

- states?
- actions?
- goal test?
- path cost?

Example: The 8-puzzle

Start State

Goal State

- states? locations of tiles
- actions? move blank left, right, up, down
- goal test? = goal state (given)
- path cost? 1 per move
[Note: optimal solution of n-Puzzle family is NP-hard]

Example: robotic assembly

- states?: real-valued coordinates of robot joint angles parts of the object to be assembled
- actions?: continuous motions of robot joints
- goal test?: complete assembly
- path cost?: time to execute

Tree search algorithms

- Basic idea:
- offline, simulated exploration of state space by generating successors of already-explored states (a.k.a.~expanding states)
function Tree-SEARCH (problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do
if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree

Tree search example

Tree search example

Tree search example

Implementation: general tree search

```
function Tree-Search( problem, fringe) returns a solution, or failure
    fringe \(\leftarrow \operatorname{Insert}(\) Make-Node(Initial-State[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node \(\leftarrow\) Remove-Front (fringe)
    if Goal-Test[problem](State[node]) then return Solution(node)
    fringe \(\leftarrow \operatorname{Insert}\) All(EXPAND(node, problem), fringe)
```

function Expand (node, problem) returns a set of nodes
successors \leftarrow the empty set
for each action, result in SUCCESSOR-Fn[problem](State%5Bnode%5D) do
$s \leftarrow a$ new Node
Parent-Node $[s] \leftarrow$ node; Action $[s] \leftarrow$ action; State $[s] \leftarrow$ result
Path-Cost $[s] \leftarrow$ Path-Cost[node] $+\operatorname{Step}-\operatorname{Cost}($ node, action, s)
Depth $[s] \leftarrow$ Depth $[$ node $]+1$
add s to successors
return successors

Implementation: states vs. nodes

- A state is a (representation of) a physical configuration
- A node is a data structure constituting part of a search tree includes state, parent node, action, path cost $g(x)$, depth

- The Expand function creates new nodes, filling in the various fields and using the successorFn of the problem to create the corresponding states.

Search strategies

- A search strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- time complexity: number of nodes generated
- space complexity: maximum number of nodes in memory
- optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
- b : maximum branching factor of the search tree
- d: depth of the least-cost solution
- m: maximum depth of the state space (may be ∞)

Uninformed search strategies

- Uninformed search strategies use only the information available in the problem definition
- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search

Breadth-first search

- Expand shallowest unexpanded node - Implementation:
- fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
- fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
- fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
- fringe is a FIFO queue, i.e., new successors go at end

Properties of breadth-first search

- Complete? Yes (if b is finite)
- Time? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$
- Space? $O\left(b^{d+1}\right)$ (keeps every node in memory)
- Optimal? Yes (if cost = 1 per step)
- Space is the bigger problem (more than time)

Uniform-cost search

- Expand least-cost unexpanded node
- Implementation:
- fringe = queue ordered by path cost
- Equivalent to breadth-first if step costs all equal
- Complete? Yes, if step cost $\geq \varepsilon$
- Time? \# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\text {ceiling }}\left(C^{*} / \varepsilon\right)\right.$ where C^{*} is the cost of the optimal solution
- Space? \# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\text {ceiling }}\left(C^{*} / \varepsilon\right)\right.$)
- Optimal? Yes - nodes expanded in increasing order of $g(n)$

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- fringe = LIFO queue, i.e., put successors at front

Properties of depth-first search

- Complete? No: fails in infinite-depth spaces, spaces with loops
- Modify to avoid repeated states along path
\rightarrow complete in finite spaces
- Time? $O\left(b^{m}\right)$: terrible if m is much larger than d
- but if solutions are dense, may be much faster than breadth-first
- Space? $O(b m)$, i.e., linear space!
- Optimal? No

Depth-limited search

= depth-first search with depth limit I, i.e., nodes at depth / have no successors

- R

```
function DEPTH-LIMITED-SEARCH( problem, limit) returns soln/fail/cutoff
    Recursive-DLS(Make-Node(Initial-State[problem]), problem,limit)
function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff
    cutoff-occurred? & false
    if Goal-Test[problem](State[node]) then return Solution(node)
    else if DEPTH[node] = limit then return cutoff
    else for each successor in EXPAND(node,problem) do
        result }\leftarrow\mathrm{ RECURSIVE-DLS(successor, problem, limit)
        if result = cutoff then cutoff-occurred? }\leftarrow\mathrm{ true
        else if result }\not=\mathrm{ failure then return result
    if cutoff-occurred? then return cutoff else return failure
```


Iterative deepening search

```
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
    inputs: problem, a problem
    for depth}\leftarrow0\mathrm{ to }\infty\mathrm{ do
        result }\leftarrow\mathrm{ Depth-Limited-Search( problem, depth)
        if result }\not=\mathrm{ cutoff then return result
```


Iterative deepening search $/=0$

Limit $=0$ \qquad

Iterative deepening search / =1

Iterative deepening search / =2

Iterative deepening search $/=3$

Iterative deepening search

- Number of nodes generated in a depth-limited search to depth d with branching factor b :

$$
N_{D L S}=b^{0}+b^{1}+b^{2}+\ldots+b^{d-2}+b^{d-1}+b^{d}
$$

- Number of nodes generated in an iterative deepening search to depth d with branching factor b :
$N_{\text {IDS }}=(d+1) b^{0}+d b^{\wedge 1}+(d-1) b^{\wedge 2}+\ldots+3 b^{d-2}+2 b^{d-1}+1 b^{d}$
- For $b=10, d=5$,
- $N_{\text {DLS }}=1+10+100+1,000+10,000+100,000=111,111$
- $\mathrm{N}_{\text {IDS }}=6+50+400+3,000+20,000+100,000=123,456$
- Overhead $=(123,456-111,111) / 111,111=11 \%$

Properties of iterative deepening search

- Complete? Yes
- Time? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=$ $O\left(b^{d}\right)$
- Space? $O(b d)$
- Optimal? Yes, if step cost = 1

Summary of algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yes	Yes	No	No	Yes
Time	$O\left(b^{d+1}\right)$	$O\left(b^{\left[C^{*} / \epsilon\right]}\right)$	$O\left(b^{m}\right)$	$O\left(b^{l}\right)$	$O\left(b^{d}\right)$
Space	$O\left(b^{d+1}\right)$	$O\left(b^{\left[C^{*} / \epsilon\right]}\right)$	$O(b m)$	$O(b l)$	$O(b d)$
Optimal?	Yes	Yes	No	No	Yes

Repeated states

- Failure to detect repeated states can turn a linear problem into an exponential one!

Graph search

```
function GRAPH-SEARCH(problem, fringe) returns a solution, or failure
    closed }\leftarrow\mathrm{ an empty set
    fringe \leftarrow \leftarrowInSert(Make-Node(Initial-State[problem]), fringe)
    loop do
    if fringe is empty then return failure
    node}\leftarrow\mathrm{ REMOVE-FRONT(fringe)
    if Goal-Test[problem](State[node]) then return Solution(node)
    if State[node] is not in closed then
        add STATE[node] to closed
        fringe }\leftarrow\operatorname{INSERTALL(EXPAND(node, problem), fringe)
```


Summary

- Problem formulation usually requires abstracting away realworld details to define a state space that can feasibly be explored
- Variety of uninformed search strategies
- Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

