Artificial Intelligence

Adversarial Search

L.ast Lecture

B |nhformed Search

- Greedy best-first search
- A*

® Heuristic functions
- Admissibility
- Consistency

Today

® Adversarial Search
- Minimax Search
= Multiagent environment

- Alpha-Beta prunning

Adversarial Search

® Recap
- Multiagent environment
= Agents must take into account the actions of other agents
- Competitive environment
= Agent's goals are in conflict (as opposed to cooperative)

® Games = adversarial search problems
- Determinisitic, turn-taking, two-player, zero-sum games

- Zero-sum game: the payoff to all players is the same for every
instance of the game

= Chess / tic-tac-toe:
-1, 1 (second player wins)
1, -1 (first player wins)
0,0 (draw)

Adversarial Search

® |f game involves two players, we name players MAX and
MIN
- MAX moves first
- then MIN
- then MAX

- At the end, points are awarded to the winning player and
penalties to the looser

® UTILITY(s, p): utility function (objective / payoff function)
- defines the final numeric value for a terminal state s for player

p
= UTILITY(s, pl) vs. UTILITY(s, p2)

Game Tree — tic-tac-toe

MIN (o) X

x[o[x] [x[o[x] [X[o[x
TERMINAL 0|X| |0]O|X
0 x[x]o|] [x[o]o
Utility -1 +1

Game Tree — tic-tac-toe

B States represent board configurations
® Players alternate: MAX(x) and MIN(o) [noughts and crosses]

® Tree grows until we reach a terminal state
- All squares are filled
- or one player has three in a row

B Values in terminal state indicate the utility function for MAX
player

Adversarial Search

® Before (normal search):
- Optimal solution is a sequence of actions leading to a goal state

® Now (adversarial search):

- MAX cannot find the best sequence of actions leading to a goal
state (a win / maximum utility function) without considering
MIN's actions

= We need to specify MAX's move
in the initial state,

in the states resulting from every possible response by
MIN,

in the states resulting from every possible response by
MIN to those moves,

and so on

Minimax

® MINIMAX(n) = utility (for MAX) of being in state n

assuming that both players play optimally until the end
of the game

- So we are assuming that the opponent (MIN) will act rationally

® UTILITY(n) is the utility for MAX

If both MAX and MIN play optimally:
- MAXWantsto ...ocovviiiiiiiiiieene UTILITY(Nn)
- MINwantstoooooovviiiiiiiiinnnn UTILITY(Nn)

® [Example on (simple) game tree]

Minimax — example

MAX

MIN

Figure 5.2 FILES: figures/minimax.eps (Tue Nov 3 16:23:11 2009). A two-ply game tree. The
A nodes are “MAX nodes,” in which it is MAX's turn to move, and the %/ nodes are “MIN nodes.” The
terminal nodes show the utility values for MAX; the other nodes are labeled with their minimax values.
MAX's best move at the root is a1, because it leads to the state with the highest minimax value, and
MIN’s best reply is by, because it leads to the state with the lowest minimax value.

10

Minimax

MINIMAX(s)=
UTILITY(s) if Terminal-test(s)
MAX e 4 chions(s) MINIMAX(Result(s,a)) if Player(s) = MAX

MiN ey ions) MINIMAX(Result(s,a)) if Player(s) = MIN

® Recursive computation
- Bottom up: from the leaves to the root
= Minimax values are backed up through the tree

® Minimax performs a complete depth-first search
exploration of the game tree

11

Minimax

function MINIMAX-DECISION(state) returns an action
return arg max, - Actions.s) MIN-VALUE(RESULT(stale, a))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST{ state) then return UTILITY(stale)
U — —00
for each a in ACTIONS(sfate) do
v+— MAX(v, MIN-VALUE(RESULT(s, a)))
return v

function MiN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(sfate)
U +— 00
for each a in ACTIONS(state) do
v — MIN(v, MAX-VALUE(RESULT(s, a)))
return v

Figure 5.3 An algorithm for calculating minimax decisions. It returns the action corre-
sponding to the best possible move, that is, the move that leads to the outcome with the
best utility, under the assumption that the opponent plays to minimize utility. The functions
MaX-VALUE and MIN-VALUE go through the whole game tree, all the way to the lcaves,
to determine the backed-up value of a state. The notation argmax, - ¢ f(a) computes the
element a of set 5 that has the maximum value of f(a).

Minimax algorithm — more than two players

" |f two players:
- One value per node (utility function for MAX)
- The utility function for MIN is just the opposite (implicit)
" zero-sum games

® Three or more players
- Must keep the utility functions for each player
" an array

- Each player chooses the action that maximizes its utility
function

® [Example with simple game tree]

13

Minimax algorithm — more than two players

Lo move

A

(1,2,6) (4,2,3) (6,1,2) (7,4.1) (5,1.1) (1,5.2) (7,7.1) (5.4.5)

Figure 5.4 FILES: figures/minimax3.eps (Tue Nov 3 16:23:11 2009). The first three plies of a
game tree with three players (A, B, C). Each node is labeled with values from the viewpoint of each
player. The best move is marked at the root.

14

Alpha-Beta pruning

® Minimax examines an exponential number of nodes
- Like depth-first search
- Way too expensive for most games

® We want to prune parts of the tree
- But still get the same result

B Alpha-Beta pruning main idea: keep two bounds
- Alpha: lower bound of maximizing player
- Beta: upper bound of minimizing player

... and prune whenever you can do so safely

15

Alpha-Beta pruning

® Alpha: lower bound of maximizing player
- Minimum value MAX will have at the end

® Beta: upper bound of minimizing player
- Maximum value MIN will have at the end

® When can we prune?

- In a MAX node, prune if value of node is >=

" You are trying to maximize and current value is more or
equal than the upper bound for MIN ...

So there is no point examining more nodes
- In a MIN node, prune if value of node is <= a

" You are trying to minimize and current value is less or equal
than the lower bound for MAX ..

So there is no poing examining more nodes

16

Alpha-Beta Pruning Procedure

a—is the lower bound of maximizing player
B—is the upper bound of minimizing player

1
Max
N\ a=15
//// \4

Min Min
F(2)=15 /\/gé'cumff
4 5
Max MaX
F(4)=10
a cutoff

(pruning)

/Max\
/M.n\ﬁ o

Max
F(4)=20 / ><'
F(6)—2 M'
8 cutoff
(pruning)

17

Alpha-Beta Pruning Procedure

In a-cutoff nodes 2 and 4 have been evaluated—either by the
static function or by backing up from descendents (not
shown here).

For player Max, the maximum of 2 is 15. However, node 3
can offer a maximum of 10. To understand consider two
situations:

- Node 5 is smaller than 10, player Min will select node 5
but is irrelevant since Max player is sure to get 15 from
node 2

- Node 5 is larger than 10, in which case player Min
disregards it in favor of node 4.

So, node 3 which receives the lower bound a = 15 does not
need to evaluate node 5 and any subsequent nodes. Node
5 is a cutoff, or a pruning.

18

Alpha-Beta Pruning Procedure

In B-cutoff example, the minimum value of node 2 is 20 as given by
node 4. Any other value at node 5 larger than 20 is not going to be
selected by Min player at node 2.

The maximizer at node 5 gets the maximum of at least 25 from node
6.

This value is larger than 20, that already Minimizer player at node 2
can have, so node 7 is not explored, is a B cutoff.

The Alpha-Beta procedure starts from node 1 where two parameters
are set

a:-OO

As nodes are visited, a and B may be increased or decreased
respectively, and branches cutoff.

19

Alpha-Beta pruning — example

(a) (b)

[, 3] [, 3]

(c) (d)

20

Alpha-Beta Procedure

function ALPHA-BETA-SEARCH(sfale) returns an action
v +— MaX-VALUE(state, —00, +00)
return the action in ACTIONS(state) with value v

function MAX-VALUE(state, cv, 3) returns a ufility value
if TERMINAL-TEST(state) then return UTILITY(stale)
U == =00
for each a in ACTIONS(slaie) do
v e— MAX(v, MIN-VALUE(RESULT($,0), v, (3))
if v = [then return v
v — MAX(er, v)
return o

function MIN-VALUE(slafe, a,) returns a utility value
| if TERMINAL-TEST(state) then return UTILITY (stale)
b= 0
for each a in ACTIONS{ sfate) do

v+ MIN(v, MAX-VALUE(RESULT(s,a) ,a, 3))

if v < o then return v

3 — MIN(S, v)
return o

e -

Figure 5.7 The alpha-beta search algorithm. Notice that these routines are the same as

the MINIMAX functions in Figure 5.3, except for the two lines in each of MIN-VALUE and
MAX-VALUE that maintain «v and /3 (and the bookkeeping 1o pass these parameters along).

21

	Artificial Intelligence CS 6364
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Alpha-Beta Pruning Procedure
	Slide 20
	Alpha-Beta Procedure

