
February 12, 2013

Eduardo Blanco

Artificial Intelligence
CSE 5/7320

Adversarial Search

2

Last Lecture

 Informed Search

- Greedy best-first search

- A*

 Heuristic functions

- Admissibility

- Consistency

3

Today

 Adversarial Search

- Minimax Search
 Multiagent environment

- Alpha-Beta prunning

4

Adversarial Search

 Recap

- Multiagent environment
 Agents must take into account the actions of other agents

- Competitive environment
 Agent's goals are in conflict (as opposed to cooperative)

 Games = adversarial search problems

- Determinisitic, turn-taking, two-player, zero-sum games

- Zero-sum game: the payoff to all players is the same for every
instance of the game

 Chess / tic-tac-toe:

 -1, 1 (second player wins)

 1, -1 (first player wins)

 0, 0 (draw)

5

Adversarial Search

 If game involves two players, we name players MAX and
MIN

- MAX moves first

- then MIN

- then MAX

- ...

- At the end, points are awarded to the winning player and
penalties to the looser

 UTILITY(s, p): utility function (objective / payoff function)

- defines the final numeric value for a terminal state s for player
p

 UTILITY(s, p1) vs. UTILITY(s, p2)

6

Game Tree – tic-tac-toe

7

Game Tree – tic-tac-toe

 States represent board configurations

 Players alternate: MAX(x) and MIN(o) [noughts and crosses]

 Tree grows until we reach a terminal state

- All squares are filled

- or one player has three in a row

 Values in terminal state indicate the utility function for MAX
player

8

Adversarial Search

 Before (normal search):

- Optimal solution is a sequence of actions leading to a goal state

 Now (adversarial search):

- MAX cannot find the best sequence of actions leading to a goal
state (a win / maximum utility function) without considering
MIN's actions

 We need to specify MAX's move

 in the initial state,

 in the states resulting from every possible response by
MIN,

 in the states resulting from every possible response by
MIN to those moves,

 and so on

9

Minimax

 MINIMAX(n) = utility (for MAX) of being in state n

assuming that both players play optimally until the end
of the game

- So we are assuming that the opponent (MIN) will act rationally

 UTILITY(n) is the utility for MAX

If both MAX and MIN play optimally:

- MAX wants to UTILITY(n)

- MIN wants to UTILITY(n)

 [Example on (simple) game tree]

10

Minimax – example

11

Minimax

MINIMAX(s)=
UTILITY(s) if Terminal-test(s)
maxa∈Actions(s) MINIMAX(Result(s,a)) if Player(s) = MAX

mina∈Actions(s) MINIMAX(Result(s,a)) if Player(s) = MIN

 Recursive computation

- Bottom up: from the leaves to the root
 Minimax values are backed up through the tree

 Minimax performs a complete depth-first search
exploration of the game tree

12

Minimax

13

Minimax algorithm – more than two players

 If two players:

- One value per node (utility function for MAX)

- The utility function for MIN is just the opposite (implicit)
 zero-sum games

 Three or more players

- Must keep the utility functions for each player
 an array

- Each player chooses the action that maximizes its utility
function

 [Example with simple game tree]

14

Minimax algorithm – more than two players

15

Alpha-Beta pruning

 Minimax examines an exponential number of nodes

- Like depth-first search

- Way too expensive for most games

 We want to prune parts of the tree

- But still get the same result

 Alpha-Beta pruning main idea: keep two bounds

- Alpha: lower bound of maximizing player

- Beta: upper bound of minimizing player

... and prune whenever you can do so safely

16

Alpha-Beta pruning

 Alpha: lower bound of maximizing player

- Minimum value MAX will have at the end

 Beta: upper bound of minimizing player

- Maximum value MIN will have at the end

 When can we prune?

- In a MAX node, prune if value of node is >= β
 You are trying to maximize and current value is more or

equal than the upper bound for MIN ...

 So there is no point examining more nodes

- In a MIN node, prune if value of node is <= α
 You are trying to minimize and current value is less or equal

than the lower bound for MAX ..

 So there is no poing examining more nodes

17

Alpha-Beta Pruning Procedure

α—is the lower bound of maximizing player

β—is the upper bound of minimizing player

F(4)=20

F(2)=15

1

Max

2

Min

3

Min

4

Max

5

Max

α=15

α cutoff

F(4)=10

α cutoff
(pruning)

1

Max

2

Min

3

Min

4

Max
5

Max

ϐ=20

7

Min

6

Min

ϐ cutoff
(pruning)

F(6)=25

18

Alpha-Beta Pruning Procedure

In α-cutoff nodes 2 and 4 have been evaluated—either by the
static function or by backing up from descendents (not
shown here).

For player Max, the maximum of 2 is 15. However, node 3
can offer a maximum of 10. To understand consider two
situations:

- Node 5 is smaller than 10, player Min will select node 5
but is irrelevant since Max player is sure to get 15 from
node 2

- Node 5 is larger than 10, in which case player Min
disregards it in favor of node 4.

So, node 3 which receives the lower bound α = 15 does not
need to evaluate node 5 and any subsequent nodes. Node
5 is α cutoff, or α pruning.

19

Alpha-Beta Pruning Procedure

In β-cutoff example, the minimum value of node 2 is 20 as given by
node 4. Any other value at node 5 larger than 20 is not going to be
selected by Min player at node 2.

The maximizer at node 5 gets the maximum of at least 25 from node
6.

This value is larger than 20, that already Minimizer player at node 2

can have, so node 7 is not explored, is a β cutoff.

The Alpha-Beta procedure starts from node 1 where two parameters
are set

α = -∞
β = +∞

As nodes are visited, α and β may be increased or decreased

respectively, and branches cutoff.

20

Alpha-Beta pruning – example

21

Alpha-Beta Procedure

	Artificial Intelligence CS 6364
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Alpha-Beta Pruning Procedure
	Slide 20
	Alpha-Beta Procedure

