
February 12, 2013

Eduardo Blanco

Artificial Intelligence
CSE 5/7320

Adversarial Search

2

Last Lecture

 Informed Search

- Greedy best-first search

- A*

 Heuristic functions

- Admissibility

- Consistency

3

Today

 Adversarial Search

- Minimax Search
 Multiagent environment

- Alpha-Beta prunning

4

Adversarial Search

 Recap

- Multiagent environment
 Agents must take into account the actions of other agents

- Competitive environment
 Agent's goals are in conflict (as opposed to cooperative)

 Games = adversarial search problems

- Determinisitic, turn-taking, two-player, zero-sum games

- Zero-sum game: the payoff to all players is the same for every
instance of the game

 Chess / tic-tac-toe:

 -1, 1 (second player wins)

 1, -1 (first player wins)

 0, 0 (draw)

5

Adversarial Search

 If game involves two players, we name players MAX and
MIN

- MAX moves first

- then MIN

- then MAX

- ...

- At the end, points are awarded to the winning player and
penalties to the looser

 UTILITY(s, p): utility function (objective / payoff function)

- defines the final numeric value for a terminal state s for player
p

 UTILITY(s, p1) vs. UTILITY(s, p2)

6

Game Tree – tic-tac-toe

7

Game Tree – tic-tac-toe

 States represent board configurations

 Players alternate: MAX(x) and MIN(o) [noughts and crosses]

 Tree grows until we reach a terminal state

- All squares are filled

- or one player has three in a row

 Values in terminal state indicate the utility function for MAX
player

8

Adversarial Search

 Before (normal search):

- Optimal solution is a sequence of actions leading to a goal state

 Now (adversarial search):

- MAX cannot find the best sequence of actions leading to a goal
state (a win / maximum utility function) without considering
MIN's actions

 We need to specify MAX's move

 in the initial state,

 in the states resulting from every possible response by
MIN,

 in the states resulting from every possible response by
MIN to those moves,

 and so on

9

Minimax

 MINIMAX(n) = utility (for MAX) of being in state n

assuming that both players play optimally until the end
of the game

- So we are assuming that the opponent (MIN) will act rationally

 UTILITY(n) is the utility for MAX

If both MAX and MIN play optimally:

- MAX wants to UTILITY(n)

- MIN wants to UTILITY(n)

 [Example on (simple) game tree]

10

Minimax – example

11

Minimax

MINIMAX(s)=
UTILITY(s) if Terminal-test(s)
maxa∈Actions(s) MINIMAX(Result(s,a)) if Player(s) = MAX

mina∈Actions(s) MINIMAX(Result(s,a)) if Player(s) = MIN

 Recursive computation

- Bottom up: from the leaves to the root
 Minimax values are backed up through the tree

 Minimax performs a complete depth-first search
exploration of the game tree

12

Minimax

13

Minimax algorithm – more than two players

 If two players:

- One value per node (utility function for MAX)

- The utility function for MIN is just the opposite (implicit)
 zero-sum games

 Three or more players

- Must keep the utility functions for each player
 an array

- Each player chooses the action that maximizes its utility
function

 [Example with simple game tree]

14

Minimax algorithm – more than two players

15

Alpha-Beta pruning

 Minimax examines an exponential number of nodes

- Like depth-first search

- Way too expensive for most games

 We want to prune parts of the tree

- But still get the same result

 Alpha-Beta pruning main idea: keep two bounds

- Alpha: lower bound of maximizing player

- Beta: upper bound of minimizing player

... and prune whenever you can do so safely

16

Alpha-Beta pruning

 Alpha: lower bound of maximizing player

- Minimum value MAX will have at the end

 Beta: upper bound of minimizing player

- Maximum value MIN will have at the end

 When can we prune?

- In a MAX node, prune if value of node is >= β
 You are trying to maximize and current value is more or

equal than the upper bound for MIN ...

 So there is no point examining more nodes

- In a MIN node, prune if value of node is <= α
 You are trying to minimize and current value is less or equal

than the lower bound for MAX ..

 So there is no poing examining more nodes

17

Alpha-Beta Pruning Procedure

α—is the lower bound of maximizing player

β—is the upper bound of minimizing player

F(4)=20

F(2)=15

1

Max

2

Min

3

Min

4

Max

5

Max

α=15

α cutoff

F(4)=10

α cutoff
(pruning)

1

Max

2

Min

3

Min

4

Max
5

Max

ϐ=20

7

Min

6

Min

ϐ cutoff
(pruning)

F(6)=25

18

Alpha-Beta Pruning Procedure

In α-cutoff nodes 2 and 4 have been evaluated—either by the
static function or by backing up from descendents (not
shown here).

For player Max, the maximum of 2 is 15. However, node 3
can offer a maximum of 10. To understand consider two
situations:

- Node 5 is smaller than 10, player Min will select node 5
but is irrelevant since Max player is sure to get 15 from
node 2

- Node 5 is larger than 10, in which case player Min
disregards it in favor of node 4.

So, node 3 which receives the lower bound α = 15 does not
need to evaluate node 5 and any subsequent nodes. Node
5 is α cutoff, or α pruning.

19

Alpha-Beta Pruning Procedure

In β-cutoff example, the minimum value of node 2 is 20 as given by
node 4. Any other value at node 5 larger than 20 is not going to be
selected by Min player at node 2.

The maximizer at node 5 gets the maximum of at least 25 from node
6.

This value is larger than 20, that already Minimizer player at node 2

can have, so node 7 is not explored, is a β cutoff.

The Alpha-Beta procedure starts from node 1 where two parameters
are set

α = -∞
β = +∞

As nodes are visited, α and β may be increased or decreased

respectively, and branches cutoff.

20

Alpha-Beta pruning – example

21

Alpha-Beta Procedure

	Artificial Intelligence CS 6364
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Alpha-Beta Pruning Procedure
	Slide 20
	Alpha-Beta Procedure

