
Eduardo Blanco

Artificial Intelligence
CSE 5/7320

January 29, 2013

Search

2CSE 5/7320 Artificial Intelligence Southern Methodist University

Search
 We have seen how to define problems

- Initial state, actions and transition model implicitly define the
state space

 Directed graph
 nodes are states
 edges are actions

- For serious problems you cannot afford to build the whole graph

3CSE 5/7320 Artificial Intelligence Southern Methodist University

Search example

S

A

D

B

E F

G

C
3

4 4

4 2 4
3

5 5

This is a highway map with cities and distances between them. The problem is
to find a path (any path) from S to G (from initial/start to goal)

The problem of finding the shortest (optimal path) will be considered later.

4CSE 5/7320 Artificial Intelligence Southern Methodist University

Search Tree
We build a search tree that is our search space.
A search tree is not a graph.
A search tree is constructed such that paths are not redundant.

Nodes are paths in the graph, and branches connect paths.

G

S

A D

B D A E

C E E B B F

D F B F C E A C G

FG C G

Here this node
represents the
path from S to D

5CSE 5/7320 Artificial Intelligence Southern Methodist University

Search Tree

G

S

A D

B D A E

C E E B B F

D F B F C E A C G

FG C G

Here this node
represents the
path from S to D

 Terminology
- Expanding a node: consider actions available from the node

- Frontier: leaf nodes available for expansion
 Search strategy decides which node to expand

6CSE 5/7320 Artificial Intelligence Southern Methodist University

Search Algorithms
 We will a few search algorithms:

- Uninformed (aka blind): do not use any information about the
problem

- Informed: use an utility function to estimate how good a node is
 Is it closer to the goal?

 Measuring performance of search algorithms:
- Completeness

 guaranteed to find a solution?

- Optimality
 guaranteed to find optimal solution?

- Time Complexity
 how long does it take?

- Space Complexity
 how much memory does it need?

7CSE 5/7320 Artificial Intelligence Southern Methodist University

Search Algorithms

 Time and space complexity are measured in terms of:
- b, branching factor: maximum number of successors of any

node

- d, depth of least-cost solution

- m, maximum depth of state space
 (could be infinity)

8CSE 5/7320 Artificial Intelligence Southern Methodist University

Search Algorithms

Hill climbing

Beam search

Best-first search

A* search

Blind/Uninformed
search

Heuristic/Informed
search

Basic
search

Breadth-first

Uniform-cost

Depth-first

Depth-limited

Iterative Deepening

9CSE 5/7320 Artificial Intelligence Southern Methodist University

Breadth-First Search
 Steps:

- Expand root

- Expand all successors of the root

- Expand the successors of the successors of the root,

- And so on

 [Example on previous search tree]

 [Example on 8-puzzle]

10CSE 5/7320 Artificial Intelligence Southern Methodist University

Breadth-First Search
 Complete?

 Optimal?

 Time?

 Space?

11CSE 5/7320 Artificial Intelligence Southern Methodist University

Breadth-First Search
 Complete?

- Yes (if b is finite)
 Optimal?

- Yes (if cost = 1 per step, i.e., all actions cost the same)
 Time?

- b + b2 + b3 +… + bd = O(bd) [d is the depth of the solution]
 Space?

- O(bd) (keeps every node in memory)

12CSE 5/7320 Artificial Intelligence Southern Methodist University

Depth-First Search
 Steps:

- Expand the deepest node in the current frontier of the search
tree

 [Example on previous search tree]

 [Example on 9-puzzle]

13CSE 5/7320 Artificial Intelligence Southern Methodist University

Depth-First Search
 Complete?

 Optimal?

 Time?

 Space?

14CSE 5/7320 Artificial Intelligence Southern Methodist University

Depth-First Search
 Complete?

- No, fails in infinite-depth spaces, spaces with loops
 Avoid repeated states (tree vs. graph search)

- Complete in finite spaces
 Optimal?

- No
 Time?

- O(bm) [m is maximum depth of any node]
 Space?

- O(bm) [the only advantage over BFS]

 Note that m may be much larger than d

15CSE 5/7320 Artificial Intelligence Southern Methodist University

BFS vs. DFS

Depth-first is recommended when all paths reach dead ends, or reach
the goal in reasonable number of steps
d—depth of tree is small

Breadth first search is better for trees that are deep.
Not good for large b.

Yes

No Yes

No

S
A D

B D A E

C E E B B F

D F B F C E A C G

F

G

G C G

Breadth-first
search

Depth-
first

16CSE 5/7320 Artificial Intelligence Southern Methodist University

Uniform-cost search
 BFS expands the shallowest unexpanded node

- It is optimal if all actions cost the same

 What if actions have different costs?

- (very) similar idea: expand the node with the lowest path cost

- g(n) is the path cost of node n
 Cost from initial state until n

 If all actions cost the same (each edge costs 1), BFS and uniform-
cost search are exactly the same

17CSE 5/7320 Artificial Intelligence Southern Methodist University

Depth-limited Search
 The issue of DFS is that it may go too deep

- and “get lost”

 Easy solution: impose a limit l on depth: depth-limited search (DLS)

- Problem if the solution is actually deeper than l
 We may not find the solution

 DLS is exactly the same than DFS, the only difference is that we
stop at a certain depth l

18CSE 5/7320 Artificial Intelligence Southern Methodist University

Iterative deepening search
 Gradually increase the limit for Depth-limited Search until a goal is

found

 [Example with search tree]

19CSE 5/7320 Artificial Intelligence Southern Methodist University

Iterative deepening search

20CSE 5/7320 Artificial Intelligence Southern Methodist University

Properties of iterative deepening search
 Complete? Yes
 Time? d b1 + (d-1)b2 + … + bd = O(bd)
 Space? O(bd)
 Optimal? Yes, if step cost = 1

21CSE 5/7320 Artificial Intelligence Southern Methodist University

Iterative deepening search
 Number of nodes generated in a depth-limited search to depth d

with branching factor b:
NDLS = b1 + b2 + … + bd-2 + bd-1 + bd

 Number of nodes generated in an iterative deepening search to
depth d with branching factor b:

NIDS = d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd = O(bd)

 For b = 10, d = 5,
NDLS = 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110
NIDS = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

 Overhead = (123,450 - 111,110)/111,110 = 11%

IDS is iterative-deepening search
DLS is depth-limited search

22CSE 5/7320 Artificial Intelligence Southern Methodist University

Comparing Search Algorithms

Criterion Breadth-
first

Uniform-
Cost

Depth-First Depth-
limited

Iterative
Deepening

Complete? Yes Yes No No Yes

Time O(bd) O(b1+ C*/ε⌊ ⌋) O(bm) O(bl) O(bd)

Space O(bd) O(b1+ C*/ε⌊ ⌋) O(bm) O(bl) O(bd)

Optimal? Yes Yes No No Yes

	Artificial Intelligence CS 6364
	Basic Search Methods
	Slide 3
	Slide 4
	Slide 5
	Search Methods
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Search Tree
	Uniform-cost search
	Slide 17
	Iterative deepening search l =3
	Slide 19
	Slide 20
	Slide 21
	Slide 22

