Artificial Intelligence CSE 5/7320

Eduardo Blanco January 29, 2013

Problem Solving

Last Lecture

- Definitions of AI
 - Think like humans
 - Act like humans
 - Think rationally
 - Act rationally
- What is an agent?
- Percept, percept sequence
- Rational agent
- Task Environment
 - Performance measure
 - Environment (and their properties)
 - Sensors
 - Actuators
- Types of agents

Today (and next week)

- Solving problems by search
 - Problem formulation /definition
 - Search space
- Search algorithms
 - Uninformed search
 - Informed search
 - Adversarial search

Defining Problems

- Formally, five components (plus defining a *state*)
 - Initial state
 - The state the agent starts in
 - Actions
 - What actions can the agent perform in each state?
 - Given a state, list all actions available
 - Transition model
 - What does an action do?
 - From state s, applying action a we move to state s'
 - Goal test
 - Check if a state is a *goal state*
 - Goal test (property) vs. goal state
 - Path: sequence of states connected by actions
 - Path Cost
 - Functions that assign a numeric cost to a path

Defining Problems

- Initial state, Actions, Transition model, Goal test, Path Cost
- Initial state, actions and transition model form a directed graph
 - Nodes are states
 - Links between nodes are actions
- Abstraction level
 - We want an *abstract model* of the problem
 - Abstract states and actions
 - Skip unnecessary details

- What is a state?
- Initial state
- Actions
- Transition model
- Goal Test
- Path Cost

- What is a state?
 - Agent is in A or B
 - A may or may not have dirt
 - B may or may not have dirt
 - How many possible states?
 - If only two locations:
 - In general, for n locations:

- Initial state
 - Any state is a plausible initial state
- Actions
 - Move to the left
 - Move to the right
 - Suck
 - If more than two location (a grid), move up / down

- Transition Model
 - Moving left from state A?
 - Moving right from state *B*?

- Goal Test
 - Check if squares are clean
 - How many states satisfy the goal test?
- Path Cost
 - Each action has uniform cost

- 3x3 board
 - 8 numbered tiles
 - 1 blank space
- A tile adjacent to the blank space can slide into the space
- Goal: reach a specified state

Start State

Goal State

Start State

Goal State

- What is a state?
 - Specify the location of each tile and the blank in one of the nine squares
 - Enumerate all squares and assign integers

Start State

Goal State

- Initial state
 - Any state
- Actions
 - Move tiles?
 - Move ...
 - Restrictions (not all actions are available from every state)
 - If blank is top-left then right
 - If blank is top-left then down

Start State

Goal State

- Transition model
 - Given a state and action, return the resulting state.
 - Example:
 - The resulting state of executing Left from Start State has the 5 and blank switched

Start State

Goal State

2

5

8

- Goal test
 - Check whether state matches goal configuration
- Path cost
 - Each action costs 1 (uniform)

Water Jug Puzzle

- There are two empty jugs, one of 4 gallons and one of 3 gallons. Fill the 4-gallon jug with 2 gallons of water
 - Problem formulation
 - States
 - What do we need to keep track of?
 - Initial state
 - Where do we start?
 - Actions
 - How can we act?
 - Transition Model
 - What happens after each action?
 - Goal Test
 - When are we done?

The Farmer, Fox, Goose and Grain Puzzle

- A farmer wants to move himself, a fox, ans some grain across a river. His boat is tiny, he can only take one of his possessions across one trip.
 - An unattended fox will eat a goose
 - An unattended goose will eat the grain
 - What should the farmer do?

The Farmer, Fox, Goose and Grain Puzzle

- A farmer wants to move himself, a fox, ans some grain across a river. His boat is tiny, he can only take one of his possessions across one trip.
 - An unattended fox will eat a goose
 - An unattended goose will eat the grain
 - What should the farmer do?
- State
- Initial state
- Actions
- Transition Model
- Goal Test

FFGG Puzzle – State Space Search

x unsafe

States

CSE 5/7320 Artificial Intelligence

Southern Methodist University