Inductions and Strings

Lecture Outline

Mathematical background for the "Theory of Computing"

- Induction
- Strings
- An Example

Axioms for the Natural Numbers

Axiom 0: 0 is a natural number.

Axiom 1: if x is a natural number, so is succ(x)

Axiom 2: if x is a natural number, succ(x) > x.

Axiom 3: if x and y are natural numbers and x > y, then succ(x) > y.

Axiom 4: if x and y are natural numbers and x > y, then $x \neq y$.

We write \mathbb{N} to denote the set of natural numbers.

Operations on the Natural Numbers

Addition:

$$x + 0 = x,$$

$$x + succ(y) = succ(x + y).$$

Multiplication:

$$\begin{array}{rcl} x*0 & = & 0, \\ x*succ(y) & = & (x*y)+x. \end{array}$$

Assume x=5, y=5

Two More Operations

Division:

$$(x/y) = q \Leftrightarrow y * q = x.$$

Exponentiation:

$$x^0 = succ(0),$$

 $x^{succ(y)} = (x^y) * x.$

Abbreviations

Decimal digits:

$$1 = succ(0),$$
 $2 = succ(1),$ $3 = succ(2),$ $4 = succ(3),$ $5 = succ(4),$ $6 = succ(5),$ $7 = succ(6),$ $8 = succ(7),$ $9 = succ(8),$ $10 = succ(9).$

Multidigit numbers:

$$1437 = 1*10^{3} + 4*10^{2} + 3*10^{1} + 7*10^{0}$$

$$= \underbrace{succ(succ(succ(...(succ(0))...)))}_{1437 \text{ "succ("s}}$$
0 is the primitive element for the naturals.

Strings

Let Σ be a finite set of "symbols".

- Informal definition: a string is a sequence of zero or more elements from Σ.
- Inductive definition: s ∈ Σ* iff
 - s = ε, the empty string.
 - There is a w ∈ Σ* and a c ∈ Σ such that s = w ⋅ c.
- Note: The operator · represents concatenation, and we often omit writing it, just like skipping the * for multiplication.

Tuple-Terror

In this class, we will often get definitions along the lines of:

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the states.
- 2. . . .

(From Sipser, Def. 1.5, p. 35)

"Tuples" are the mathematicians way of describing things that resemble what programmers call "data structures."

Regular Languages

Regular Languages

- Definition of regular languages
 - Regular languages are recognized by finite automata
 - Examples
- Closure properties

Languages (review)

A language is a set of strings.

- Let Σ be a finite set, called an alphabet.
- Σ* is the set of all strings of Σ, i.e. sequences of zero or more symbols from Σ.
- A language is a subset of ∑*. Examples:
 - Example, $\Sigma = \{a,b\}$, and L_1 is the set of all strings that of length at most two:

$$L_1 = \{\epsilon, a, b, aa, ab, ba, bb\}$$

With Σ as above, let L₂ be the set of all strings where every a is followed immediately by a b:

$$L_2 = \{\epsilon, b, ab, bb, abb, bab, bbb, \ldots\}$$

With Σ as above, let L₃ be the set of all strings that have more a's than b's:

$$L_3 = \{a, aa, aaa, aab, aba, aab, \ldots\}$$

Deterministic Finite Automata (review)

• A deterministic finite automaton (DFA) is a 5-tuple, $(Q, \Sigma, \delta, q_0, F)$ where:

Q is a finite set of states.

 Σ is a finite set of symbols.

 $\delta: Q \times \Sigma \to Q$ is the next state function.

 q_0 is the initial state.

F is the set of accepting states.

• Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

For $s \in \Sigma^*$,

$$\begin{array}{lll} \delta(q,s) & = & q, & \text{if } s = \epsilon \\ & = & \delta(\delta(q,x),c), & \text{if } s = x \cdot c \text{ for } c \in \Sigma \end{array}$$

The language accepted by M is

$$L(M) = \{ s \in \Sigma^* \mid \delta(q_0, s) \in F \}$$

DFA examples

$$L(M_1) = \left\{ s \in \Sigma^* \; \middle| \; \begin{array}{l} \text{Every a in s is followed by a b without} \\ \text{an intervening c.} \end{array} \right\}$$

DFA examples

 $L(M_2) = \{s \in \Sigma^* \mid s \text{ ends with three consecutive a.'s.} \}$

DFA examples

$$L(M_3) \ = \ \left\{ s \in \Sigma^* \ \middle| \ \begin{array}{l} \text{the difference between the number of } \\ \text{a's in } s \text{ and the number of b's is a multiple of 5}. \end{array} \right\}$$

Regular Languages (Definition)

A language, B, is a regular language iff there is some DFA M such that L(M) = B.

In other words, the regular languages are the languages that are recognized by DFAs.

- To show that a language is regular, we can construct a DFA that recognizes is.
- Conversely, we can show that a language is not regular by proving that there
 can be no DFA that accepts it.

Regular Languages (Properties)

The regular languages are closed under:

Complement: If B is a regular language, then so is \overline{B} .

A string is in B iff it is not in B.

Intersection: If B_1 and B_2 are regular languages, then so is $B_1 \cap B_2$.

- A string is in B₁ ∩ B₂ iff it is in both B₁ and B₂.
- Because we have complement and intersection, we can conclude that the union, difference, symmetric difference, etc. of regular languages is regular.

Concatenation: If B_1 and B_2 are regular languages, then so is $B_1 \cdot B_2$.

A string, s, is in B₁ · B₂ iff there are strings x and y such that x ∈ B₁, y ∈ B₂, and s = x · y. Note that x and/or y may be ε.

Kleene star: B is a regular language, then so is B^* .

- A string, s, is in B^* iff $s = \epsilon$ or there are strings x and y such that $x \in B^*$, $y \in B$, and $s = x \cdot y$.
- Note that even if $B = \emptyset$, $\epsilon \in B^*$. Thus, for any language B, $B^* \neq \emptyset$.

Complement example

$$L(M') \quad = \quad \left\{ s \in \Sigma^* \; \left| \begin{array}{l} s \text{ ends with an a or has an a followed} \\ \text{immediately by a } c. \end{array} \right. \right\}$$

Closure under Complement

Let $B \subseteq \Sigma^*$ be a regular language.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA that recognizes B.

Let $M' = (Q, \Sigma, \delta, q_0, \overline{F})$. M' recognizes \overline{B} .

Proof: let $s \in \Sigma^*$ be a string.

- If $s \in B$, then $\delta(q_0, s) \in F$. Thus, $\delta(q_0, s) \not\in \overline{F}$. Thus $s \not\in L(M')$.
- If $s \not\in B$, then $\delta(q_0, s) \not\in F$. Thus, $\delta(q_0, s) \in \overline{F}$. Thus $s \in L(M')$.

 \overline{B} is recognized by a DFA; therefore, \overline{B} is regular.

Closure under Intersection

- Let $B_1, B_2 \subseteq \Sigma^*$ be regular languages.
- Let $M_1=(Q_1,\Sigma,\delta_1,q_{1,0},F_1)$ and $M_2=(Q_2,\Sigma,\delta_2,q_{2,0},F_2)$ be DFAs that recognize B_1 and B_2 respectively.
- Let $M^{\cap} = (Q_1 \times Q_2, \Sigma, \delta, q_0, F_1 \times F_2)$ where

$$q_0 = (q_{1,0}, q_{2,0})$$

$$\delta((q_1, q_2), c) = (\delta_1(q_1, c), \delta_2(q_2, c))$$

for any $q_1 \in Q_1$, $q_2 \in Q_2$ and $c \in \Sigma$. M^{\cap} recognizes $B^1 \cap B^2$.