Inductions and Strings



Lecture OQutline

Mathematical background for the “Theory of Computing”
® Induction
® Strings
® An Example



Axioms for the Natural Numbers

Axiom 0: 0 is a natural number.

Axiom 1: if z is a natural number, so is suce(x)
Axiom 2: if = is a natural number, succ(x) > .
Axiom 3: if x and y are natural numbers and = > y, then suce(x) > .

Axiom 4: if  and y are natural numbers and = > y, then = # y.

We write N to denote the set of natural numbers.



Operations on the Natural Numbers
® Addition:

r+0 = =z,

x + suec(y) suce(x + y).

® Multiplication:
rx0 = 0.
rxsuce(y) = (r=*y)+ .

Assume
x=5,y=b


bilal
Text Box
Assume x=5 , y=5


Two More Operations
® Division:
(z/y)=q & yxq=u

® Exponentiation:

¥ = suce(0),

psuce(y)  — (xY) * .



Abbreviations

® Decimal digits:

1 = suce(0), 2= suce(l), 3= succ(2), 4= succ(3),
b= succ(d), 6= succ(d), T=succ(b), 8= suce(7),
9 = suce(8), 10 = suec(9).

® Multidigit numbers:
1437 = 1%10° + 4*10% + 3*10 '+ 7*10"
= succ(succ(succ(...(succ(0))...))
1437 ““suce(’’s 1437 **)’s

() 1s the primitive element for the naturals.



Strings

Let X be a finite set of “symbols”.

® Informal definition: a string is a sequence of zero or more elements
from X.

® Inductive definition: s € ¥* iff
® s = ¢, the empty string.

® Thereisawe X*andace X suchthats = w - c.

® Note: The operator - represents concatenation, and we often omit
writing it, just like skipping the * for multiplication.



Tuple-Terror

In this class, we will often get definitions along the lines of:

A finite automaton is a 5-tuple (Q. 3, 6. qo, F),
where

1. @ i1s a finite set called the states.
2. ...
(From Sipser, Def. 1.5, p. 39)

“Tuples” are the mathematicians way of describing things

that resemble what programmers call “data structures.”



Regular Languages



Regular Languages

® Definition of regular languages

® Regular languages are recognized by finite automata

® Examples

® Closure properties



Languages (review)

A language is a set of strings.

@ Let X be a finite set, called an alphabet.

@ " is the set of all strings of &, i.e. sequences of zero or more symbols from ¥,

@® Alanguage is a subset of £*. Examples:

® Example, ¥ = {-, 1}, and L, is the set of all strings that of length at most two:

@ With ¥ as above, let L be the set of all strings where every - is followed
immediately by a ©:

Ly = {eb,ab,bb,abb,ba

.-..'! At it L

@ With ¥ as above, let Ly be the set of all strings that have more ='s than 1's:



Deterministic Finite Automata (review)

® A deterministic finite automaton (DFA) is a 5-tuple, (Q. X, 4, o, F')
where:
¢} is a finite set of states.

¥ is a finite set of symbols.

d:Q x ¥ — is the next state function.
go is the initial state.

I is the set of accepting states.

® Let M = (Q.%.6.q0. F) be a DFA.
Fors & X%,
ag,8) = q, ifs =¢
= d§(d(g,x).c), fs=x-clorcc X

The language accepted by M is

L(M) = {seX*|d(q,s) € F}



DFA examples
b,C 3
{) a () ¢

b

Every @ in s is followed by a b without
an intervening c.

a,b,c

L(M,) = {Sez*




DFA examples

b.C

L(Ms2) = {s € X*| sends with three consecutive ='s. }



DFA examples

a'sin s and the number of 2’s is a mul-

the difference between the number of
sE X
tiple of 5.




Regular Languages (Definition)

A language, B, is a regular language iff there is some DFA M such
that (M) = B.

In other words, the regular languages are the languages that are
recognized by DFAs.

® To show that a language is regular, we can construct a DFA that recognizes is.

@ Conversely, we can show that a language is not regular by proving that there
can be no DFA that accepts it.



Regular Languages (Properties)

The regular languages are closed under:

Complement: If B is a regular language, then so is B.
@ Astringisin B iffitis notin B.
Intersection: If B, and B, are regular languages, then so is B; N Bs.
® Astringisin By n B iffitis in both B, and B-.
@ Because we have complement and intersection, we can conclude that the
union, difference, symmetric difference, etc. of regular langauges is regular.
Concatenation: If B; and B; are regular languages, then so is B; - Bs.
® Astring, s, isin B; - Bs iff there are strings = and y such that = € By, y € Bo,

and s = x - y. Note that = and/or y may be «.

Kleene star: B is a regular language, then so is B*.

@ Astring, s, is in B* iff s = ¢ or there are strings = and y such that x € B*,
ye B,ands =z -y.

® Note thateven if B = 0, ¢ £ B*. Thus, for any language B, B* # (0.



Complement example

M M’
b,C 3 a,b,c b,C 3 a,b,c
a cC ) a cC )
©.0 “ (O ©
b b

LM') = {SEE*

s ends with an = or has an a followed }
immediately by a c.




Closure under Complement

Let B C ¥* be a regular language.
Let M = (Q, %, 9, qo, F') be a DFA that recognizes B.

Let M’ = (Q,%. 4, qo, F). M’ recognizes B.

Proof: let s € >* be a string.

® Ifsc B, thend(qo,s) € F.
Thus, §(qn,s) & F.
Thus s @ L(M").

® Ifs& B, then d(go,s) & F.
Thus, §(qo,s) € F.
Thus s € L(M").

B is recognized by a DFA:
therefore, B is regular.

]



Closure under Intersection

® Let 3, B, C X" be regular languages.

® Let My = (Ql, 2, 151, q1.0, Fl} and M, = (QQ, Y, tﬁg, q2.04 Fg) be DFAs
that recognize B; and B- respectively.

® Let M™ = (Ql X Q?? Ej 5'.- d0, ‘Lﬂl A FE) where

qo = (GLL};Q’M])
5((@1&2);"3} = (51@1;"-7)?52(92:(?))

forany ¢ € 1, g2 € Q2 and c € .
M" recognizes B! N B2.





