Introduction to the Theory of
Computing

Bilal Alqudah , PhD


bilal
Text Box
Bilal Alqudah , PhD 

bilal
Sticky Note
Unmarked set by bilal


Lecture Outline

® Course Overview
® Languages

® Models of Computation



Lecture Outline

® Course Qverview

® Languages
® Human Languages

® Programming Languages

® Formal Languages

® Models of Computation



Human Languages

English, French, Danish, Hungarian, Urdu, Cantonese, ...

Which sentences below are true, meaningful, grammatical?
@ vgrlum gp#d*n aoiuiui brubrubrubru 3jc6r

dog homework ate my. My

Erpa shumblers groffed dulky brubrus.

Iron is denser than styrofoam.

The textbook for this class has exactly ten pages.

Two is less than three.
The loneliness sat for cast iron subtraction.

George W. Bush is smarter than a dead slug.



Programming Languages

C, Java, Python, Prolog, Pascal, ...

When is a program:
® syntactically correct?
® compilable?
® free from fatal exceptions at runtime?
® free from deadlock or infinite loops?
® a correct implementation of its specification?



Grading

First exam 20%
Second exam 20%
Homework 10%
Final 50%



Formal Languages

® An alphabet, %, is a finite set of symbols, e.g. {&. 1, ,V}.

® A string is a sequence of zero or more symbols from ¥, e.g. & = =
ori7|7.

® We'll write ¢ to denote the empty string (the string consisting of zero
characters).

® We'll write ¥* to denote all strings consisting of symbols from X.

® A language, L, is a subset of ¥*.



Formal Language, example

let © = (=0, A, v, () ).

We could define Lj to be the set of all strings that represent
syntactically correct boolean formulas.

We could define L, to be the set of all strings that represent
boolean tautologies.

In logic, a tautology is a formula that is true in
every possible interpretation

Example strings:
o oisin Ly but not L.
. W —alisin Ly and L.
(a vV b W (=a A =h))isin Ly and Lq.
(2 v A bisnotin Ly and notin L.

We can write a computer program that determines whether or not
an arbitrary string is in Ly orin L.


bilal
Text Box
In logic, a tautology is a formula that is true in every possible interpretation


Lecture Outline

® Course Overview
® Languages

® Models of Computation
® Logic gates
@ Finite automata
® Push-down automata

@ Turing machines



Logic Gates

n; )
1N~ ‘,]:{ % out

® “Language’ is set of all inputs that produce a true output value.

® Any circuit only accepts fixed number of bits for input — not a true
language in the sense described above.



Finite Automata

Lo

Initially: out =0

® Logic gates plus a fixed number of bits of storage.

® Can process an arbitrarily long strings.
The example circuit accepts all strings with an odd number of ones.

® The languages that can be recognized by finite automata are very
restricted.

® For example, finite automaton can't recognize inputs that have more 1's than
0's or mathematical formulas where the parentheses balance properly.



Finite Automata

o oo

Initially: out =0

® Logic gates plus a fixed number of bits of storage.

® Can process an arbitrarily long strings.
The example circuit accepts all strings with an odd number of ones.

® The languages that can be recognized by finite automata are very

restricted.

@ For example, finite automaton can't recognize inputs that have more 1's than
0's or mathematical formulas where the parentheses balance properly.

@ Intuitvely, this is because a machine with a fixed number, k, bits of storage can
only count to 2%. After reading 2* + 1 ''s, the machine must be in a state that it

was in before.



Push-Down Automaton

Unbounded
Stack

)

p finite
1N — L OUL
automaton

® A finite automaton with an unbounded stack.

® Can recognize properly balanced parantheses and other
languages with nesting structures.

® Most programming languages have syntaxes with this kind of
nesting structure.

® More general than finite automata, but still limited.

@ Cannot recognize the language of all strings whose lengths are prime numbers.



Turing Machines

tape |
head ™

y

finite |—> YES
automaton [y NO

11N —=]

® A finite automaton with an unbounded read/write tape.

® Can recognize any language that is recognizable by ANY computer!

® Yet, there are problems that a Turing machine cannot solve.



What’s the “Theory of Computing”?

Here’'s the kinds of questions we consider:

® 1. What problems are possible/impossible to solve with a
computer?

® 2. What problems are easy/hard to solve with a computer?

® 3. What is a computer?

® 4. Do do the answers to 1 and 2 depend on the answer to 37



What is a computer?

Finite state machines:
A fixed amount of memory.

Pushdown automata:
An infinite amount of memory, arranged as a stack.

Turing machines:
An infinite amount of memory, arranged as a tape with a "head”
that can read, write, and move left or right.

A Turing machine is very simple but can perform any computation
that a conventional comptuter can do. In fact, we don’t know of
anything that can compute something that a Turing machine

cannot.





